Skip to main content

Kahn Process Networks and a Reactive Extension

  • Chapter
  • First Online:
Handbook of Signal Processing Systems

Abstract

Kahn andMacQueen have introduced a generic class of determinate asynchronous data-flow applications, called Kahn Process Networks (KPNs) with an elegant mathematical model and semantics in terms of Scott-continuous functions on data streams together with an implementation model of independent asynchronous sequential programs communicating through FIFO buffers with blocking read and non-blocking write operations. The two are related by the Kahn Principle which states that a realization according to the implementationmodel behaves as predicted by the mathematical function. Additional steps are required to arrive at an actual implementation of a KPN to take care of scheduling of independent processes on a single processor and to manage communication buffers. Because of the expressiveness of the KPN model, buffer sizes and schedules cannot be determined at design time in general and require dynamic run-time system support. Constraints are discussed that need to be placed on such system support so as to maintain the Kahn Principle. We then discuss a possible extension of the KPN model to include the possibility for sporadic, reactive behavior which is not possible in the standard model. The extended model is called Reactive Process Networks. We introduce its semantics, look at analyzability and at more constrained data-flowmodels combined with reactive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen G, Evans B, Schanbacher D (1998) Real-time sonar beamforming on a UNIX workstation using process networks and POSIX threads. In: Proc. of the 32nd Asilomar Conference on Signals, Systems and Computers, IEEE Computer Society, pp 1725–1729

    Google Scholar 

  2. Allen G, Zucknick P, Evans B (2007) A distributed deadlock detection and resolution algorithm for process networks. In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, vol 2, pp II–33–II–36, DOI 10.1109/ICASSP.2007. 366165

    Google Scholar 

  3. Basten T, Hoogerbrugge J (2001) Efficient execution of process networks. In: Chalmers A, Mirmehdi M, Muller H (eds) Proc. of Communicating Process Architectures 2001, Bristol, UK, September 2001, IOS Press, pp 1–14

    Google Scholar 

  4. Benveniste A, Guemic PL (1990) Hybrid dynamical systems theory and the signal language. IEEE Trans Automat Contr 35:535–546

    Article  MATH  Google Scholar 

  5. Benveniste A, Caillaud B, Carloni LP, Caspi P, Sangiovanni-Vincentelli AL (2008) Composing heterogeneous reactive systems. ACM Trans Embed Comput Syst 7(4):1–36

    Article  Google Scholar 

  6. Berry G, Gonthier G (1992) The Esterel synchronous programming language: Design, semantics, implementation. Sci Comput Program 19:87–152

    Article  MATH  Google Scholar 

  7. Bhattacharya B, Bhattacharyya S (2001) Parameterized dataflow modeling for DSP systems. IEEE Transactions on Signal Processing 49(10):2408–2421

    Article  MathSciNet  Google Scholar 

  8. Bhattacharyya S, Murthy P, Lee E (1999) Synthesis of embedded software from synchronous dataflow specifications. J VLSI Signal Process Syst 21(2):151–166

    Article  Google Scholar 

  9. Brock J, Ackerman W (1981) Scenarios: A model of non-determinate computation. In: Díaz J, Ramos I (eds) Formalization of Programming Concepts, International Colloquium, Peniscola, Spain, April 19–25, 1981, Proceedings, LNCS Vol. 107, Springer Verlag, Berlin, pp 252–259

    Google Scholar 

  10. Brookes S (1998) On the Kahn principle and fair networks. Tech. Rep. CMU-CS-98-156, School of Computer Science, Carnegie Mellon University

    Google Scholar 

  11. Broy M, Dendorfer C (1992) Modelling operating system structures by timed stream processing functions. Journal of Functional Programming 2(1):1–21, URL citeseer.nj.nec.com/broy92modelling.html

    Article  Google Scholar 

  12. Buck J (1993) Scheduling dynamic dataflow graphs with bounded memory using the token flow model. PhD thesis, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  13. Carloni LP, Sangiovanni-Vincentelli AL (2006) A framework for modeling the distributed deployment of synchronous designs. Form Methods Syst Des 28:93–110

    Article  MATH  Google Scholar 

  14. Davey BA, Priestley HA (1990) Introduction to Lattices and Order. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  15. Dulloo J, Marquet P (2004) Design of a real-time scheduler for Kahn Process Networks on multiprocessor systems. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA, pp 271–277

    Google Scholar 

  16. Faustini A (1982) An operational semantics for pure dataflow. In: Nielsen M, Schmidt EM (eds) Automata, Languages and Programming, 9th Colloquium, Aarhus, Denmark, July 12- 16, 1982, Proceedings, LNCS Vol. 140, Springer Verlag, Berlin, pp 212–224

    Google Scholar 

  17. Geilen M (2009a) An hierarchical compositional operational semantics of Kahn Process Networks and its Kahn Principle. Tech. rep., Electronic Systems Group, Dept. of Electrical Engineering, Eindhoven University of Technology

    Google Scholar 

  18. Geilen M (2009b) Synchronous data flow scenarios. Transactions on Embedded Computing Systems, Special issue on Model-driven Embedded-system Design, to be published

    Google Scholar 

  19. Geilen M, Basten T (2003) Requirements on the execution of Kahn process networks. In: Degano P (ed) Proc. Of the 12th European Symposium on Programming, ESOP 2003, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7–11, 2003. LNCS Vol.2618, Springer Verlag, Berlin

    Google Scholar 

  20. Geilen M Basten T (2004) Reactive process networks. In: EMSOFT ’04: Proceedings of the 4th ACM international conference on Embedded software, ACM, New York, NY, USA, pp 137–146, DOI http://doi.acm.org/10.1145/1017753.1017778

    Chapter  Google Scholar 

  21. Girault A, Lee B, Lee E (1999) Hierarchical finite state machines with multiple concurrency models. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems 18(6):742–760

    Article  Google Scholar 

  22. Goel M (1998) Process networks in Ptolemy II. Technical Memorandum UCB/ERL No. M98/69, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  23. Halbwachs N, Caspi P, Raymond P, Pilaud D (1991) The synchronous programming language LUSTRE. Proceedings of the IEEE 79:1305–1319

    Article  Google Scholar 

  24. Jiang B, Deprettere E, Kienhuis B (2008) Hierarchical run time deadlock detection in process networks. In: Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop on, pp 239–244, DOI 10.1109/SIPS.2008.4671769

    Google Scholar 

  25. Jonsson B (1989) A fully abstract trace model for dataflow networks. In: POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ACM, New York, NY, USA, pp 155–165

    Chapter  Google Scholar 

  26. Kahn G (1974) The semantics of a simple language for parallel programming. In: Rosenfeld J (ed) Information Processing 74: Proceedings of the IFIP Congress 74, Stockholm, Sweden, August 1974, North-Holland, Amsterdam, Netherlands, pp 471–475

    Google Scholar 

  27. Kahn G, MacQueen D (1977) Coroutines and networks of parallel programming. In: Gilchrist B (ed) Information Processing 77: Proceedings of the IFIP Congress 77, Toronto, Canada, August 8–12, 1977, North-Holland, pp 993–998

    Google Scholar 

  28. Kock, de et al E (2000) YAPI: Application modeling for signal processing systems. In: Proc. of the 37th. Design Automation Conference, Los Angeles, CA, June 2000, IEEE, pp 402–405

    Google Scholar 

  29. Lee B (2000) Specification and design of reactive systems. PhD thesis, Electronics Research Laboratory, University of California, EECS Dept., Berkeley, CA, memorandum UCB/ERL M00/29

    Google Scholar 

  30. Lee E (2001) Overview of the Ptolemy project. Technical Memorandum UCB/ERL No. M01/11, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  31. Lee E, Messerschmitt D (1987) Synchronous data flow. IEEE Proceedings 75(9):1235–1245

    Article  Google Scholar 

  32. Lee E, Sangiovanni-Vincentelli A (Dec 1998) A framework for comparing models of computation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 17(12):1217–1229, DOI 10.1109/43.736561

    Article  Google Scholar 

  33. Lee EA, Matsikoudis E (2007) The Semantics of Dataflow with Firing, preprint (march 7 2 edn, Cambridge University Press. URL http://chess.eecs.berkeley.edu/ pubs/428.html, chapter from “From Semantics to Computer Science: Essays in memory of Gilles Kahn”

  34. Liu X, Lee EA (2008) Cpo semantics of timed interactive actor networks. Theor Comput Sci 409(1):110–125, DOI http://dx.doi.org/10.1016/j.tcs2008.08.044

    Article  MATH  MathSciNet  Google Scholar 

  35. Lynch N, Stark E (1989) A proof of the Kahn principle for Input/Output automata. Information and Computation 82(1):81–92, URL citeseer.nj.nec.com/lynch89proof. html

    Article  MATH  MathSciNet  Google Scholar 

  36. Martin A (1985) The probe: An addition to communication primitives. Information Processing Letters 20(3):125–130

    Article  MATH  MathSciNet  Google Scholar 

  37. Neuendorffer S, Lee EA (2004) Hierarchical reconfiguration of dataflow models. In: Proc. Second ACM-IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE 2004), IEEE Computer Society Press, to appear

    Google Scholar 

  38. Olson A, Evans B (2005) Deadlock detection for distributed process networks. In: Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE International Conference on, vol 5, pp v/73–v/76 Vol. 5, DOI 10.1109/ICASSP.2005.1416243

    Google Scholar 

  39. Park D (1979) On the semantics of fair parallelism. In: Abstract Software Specifications, Volume 86 of Lecture Notes in Computer Science, Springer Verlag, Berlin

    Google Scholar 

  40. Parks T (1995) Bounded Scheduling of Process Networks. PhD thesis, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  41. Plotkin G (1981) A structural approach to operational semantics. Tech. Rep. DAIMI FN-19, Århus University, Computer Science Department, Århus, Denmark

    Google Scholar 

  42. Poplavko P, Basten T, van Meerbergen J (2007) Execution-time prediction for dynamic streaming applications with task-level parallelism. In: DSD ’07: Proceedings of the 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, IEEE Computer Society, Washington, DC, USA, pp 228–235, DOI http://dx.doi.org/10.1109/DSD. 2007.52

    Chapter  Google Scholar 

  43. Russell J (1989) Full abstraction for nondeterministic dataflow networks. Symposium on Foundations of Computer Science 0:170–175, DOI http://doi.ieeecomputersociety.org/10 1109/SFCS.1989.63474

    Article  Google Scholar 

  44. Sriram S, Bhattacharyya SS (2000) Embedded Multiprocessors: Scheduling and Synchronization. Marcel Dekker, Inc., New York, NY, USA

    Google Scholar 

  45. Stark E (1987) Concurrent transition system semantics of process networks. In: Proc. of the 1987 SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Munich, Germany, January 1987, ACM Press, pp 199–210

    Chapter  Google Scholar 

  46. Stevens R, Wan M, Laramie P, Parks T, Lee E (1997) Implementation of process networks in Java. Technical Memorandum UCB/ERL No. M97/84, University of California, EECS Dept., Berkeley, CA

    Google Scholar 

  47. Strehl K, Thiele L, Gries M, Ziegenbein D, Ernst R, Teich J (2001) FunState - an internal design representation for codesign. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9(4):524–544, URL citeseer.nj.nec.com/strehl01funstate.html

    Article  Google Scholar 

  48. Theelen BD, Geilen M, Basten T, Voeten J, Gheorghita SV, Stuijk S (2006) A scenario-aware data flow model for combined long-run average and worst-case performance analysis. In: MEMOCODE, pp 185–194

    Google Scholar 

  49. Thies W, Karczmarek M, Amarasinghe S (2002) StreamIt: A language for streaming applications. In: Horspool RN (ed) Compiler Construction, 11th International Conference, CC 2002, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8–12, 2002, Proceedings, LNCS Vol. 2306, Springer Verlag, Berlin, pp 179–196

    Google Scholar 

  50. Thies W, Karczmarek M, Sermulins J, Rabbah R, Amarasinghe S (2005) Teleport messaging for distributed stream programs. In: PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming, ACM, New York, NY, USA, pp 224–235, DOI http://doi.acm.org/10.1145/1065944.1065975

    Chapter  Google Scholar 

  51. Vayssière J, Webb D, Wendelborn A (1999) Distributed process networks. Tech. Rep. TR 99- 03, University of Adelaide, Department of Computer Science, South Australia 5005, Australia

    Google Scholar 

  52. Yates RK (1993) Networks of real-time processes. In: Best E (ed) CONCUR’93: Proc. of the 4th International Conference on Concurrency Theory, Springer Verlag, Berlin, Heidelberg, pp 384–397

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Geilen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Geilen, M., Basten, T. (2010). Kahn Process Networks and a Reactive Extension. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6345-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6345-1_34

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6344-4

  • Online ISBN: 978-1-4419-6345-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics