Skip to main content

Medical Image Processing

  • Chapter
  • First Online:
Handbook of Signal Processing Systems

Abstract

Of many types of images around us, medical images are a ubiquitous type since xrays were first discovered in 1985. The recent years, especially after the introduction of computed tomography (CT) in 1972, have witnessed an explosion in the use of medical imaging and, consequently, the volume of medical image data being produced. It is estimated that 40,000 terabytes of medical image data were generated in the United States alone in 2009 [8]. With expanding use of medical imaging and growing size and resolution of medical images, medical image processing has evolved into an important subspecialty of image processing and the field continues to gain prominence and catch the fancy of the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bankman IN. Handbook ofMedical Image Processing and Analysis (Part II), Elsevier Science and Technology Books, Ed 2, 2008.

    Google Scholar 

  2. Blake G, Dreslinski RG, and Mudge T, A survey of multicore processors, IEEE Signal Processing. Mag., vol. 26, no. 6, pp. 26âA˘ S? 37, Nov. 2009.

    Google Scholar 

  3. Beutel J, Kundel HL, Van Metter R. Handbook of medical imaging. Volume 1: Physics and psychophysics. SPIE Press, Bellingham, WA, 2000.

    Google Scholar 

  4. Castro-Pareja CR, and Shekhar R, Hardware acceleration of mutual information-based 3D image registration, Journal of Imaging Science and Technology, vol. 49(2), pp. 105–113, 2005.

    Google Scholar 

  5. Dandekar O, Castro-Pareja C, Shekhar R, FPGA-based real-time 3D image preprocessing for image-guided medical interventions, Journal of Real-Time Image Processing, vol. 1(4), pp. 285–301, 2007.

    Article  Google Scholar 

  6. Dhawan AP. Medical Image Analysis. John Wiley & Sons, Hoboken, NJ, 2003

    Google Scholar 

  7. Feldkamp LA, Davis LC, and Kress JW, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612–619 (1984).

    Article  Google Scholar 

  8. Frost and Sullivan Briefing, The Potential for Radiology Informatics: The Next Big Wave since Anesthetics Discovery in Medicine, August 5, 2009

    Google Scholar 

  9. Gonzalez RC and Woods RE. Digital Image Processing, Prentice Hall, Ed. 3, 2008(2002).

    Google Scholar 

  10. Goldman LW. Principles of CT: multislice CT. J Nucl Med Technol. vol. 36(2):57–68, 2008.

    Article  Google Scholar 

  11. Guttmann C, Benson R, Warfield S, Wei X, Anderson M, Hall C, Abu-Hasaballah K, Mugler J, Wolfson L. White matter abnormalities in mobility-impaired older persons. Neurology. 2000 Mar 28; 54(6):1277–83. PMID: 10746598.

    Google Scholar 

  12. Hajnal JV, Hawkes DJ, Hill DLG. Medical image registration. CRC Press. Boca Raton, FL. 2001

    Book  Google Scholar 

  13. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601–9.

    Article  Google Scholar 

  14. Ino F, Ooyama K, and Hagihara K, A data distributed parallel algorithm for nonrigid image registration, Parallel Computation, vol. 31(1), pp. 19âA˘ S? 43, 2005.

    Google Scholar 

  15. Kaufman A. Volume visualization. IEEE Computer Society Press. Los Alamitos, CA. 1990.

    Google Scholar 

  16. Kak AC, Slaney M. Principles of computerized tomographic imaging. IEEE Press. Piscataway, NJ. 1988.

    MATH  Google Scholar 

  17. Kim Y, Horii SC. Handbook of medical imaging. Volume 3: Display and PACS. SPIE Press, Bellingham, WA, 2000.

    Google Scholar 

  18. Lacroute P, Levoy M. Fast volume rendering using a shear-warp factorization of the viewing transformation Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp. 451–458, 1994.

    Google Scholar 

  19. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001 Apr;13(4):534–46.

    Article  Google Scholar 

  20. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp. 163–169, 1987.

    Google Scholar 

  21. Nelder JA and Mead R, A simplex method for function minimization, The Computer Journal, vol. 7, pp. 308–313, 1964.

    Google Scholar 

  22. NEMA, Digital Imaging and Communications inMedicine, Part 1–15. NEMA Standards Publication PS3.X, 2000.

    Google Scholar 

  23. Perona P. Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Recognition and Machine Intelligence, 12(7):629–639, 1990.

    Article  Google Scholar 

  24. Pluim JPW, Maintz JBA., Viergever, MA, Mutual-information-based registration of medical images: a survey, IEEE Transactions on Medical Imaging, vol. 22(8), pp. 986–1004, August 2003.

    Article  Google Scholar 

  25. Powell MJD, An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal vol. 7, pp. 896–910, 1964.

    Article  Google Scholar 

  26. Prince JL, Links JM. Medical imaging signals and systems. Pearson Prentice Hall, Upper saddle River, NJ. 2006.

    Google Scholar 

  27. Ramm OT, Smith SW, and Pavy HGJ. High-speed ultrasound volumetric imaging system-II: Parallel processing and image display. IEEE Trans Ultrason Ferroelectr Freq Control 38:109- 115, 1991.

    Article  Google Scholar 

  28. Ranganath MV, Dhawan AP, Mullani N. A multigrid expectation maximization reconstruction algorithm for positron emission tomography. IEEE Trans Med Imaging. vol. 7(4), pp. 273–8, 1988.

    Article  Google Scholar 

  29. Ross B, Kreis R, Ernst T. Clinical tools for the 90s: magnetic resonance spectroscopy and metabolite imaging. Eur J Radiol. 1992 Mar-Apr;14(2):128–40.

    Article  Google Scholar 

  30. Rueckert D, Sonoda LI, et al. “Nonrigid registration using free-form deformations: application tobreast MR images,” IEEE Transactions on Medical Imaging, vol. 18(8), pp. 712–721, 1999.

    Article  Google Scholar 

  31. Saha S, Puthenpurayil S, Schlessman J, Bhattacharyya SS, and Wolf W. The signal passing interface and its application to embedded implementation of smart camera applications. Proceedings of the IEEE, 96(10):1576–1587, October 2008.

    Article  Google Scholar 

  32. Sen M, Hemaraj Y, Plishker W, Shekhar R, and Bhattacharyya SS. Model-based mapping of reconfigurable image registration on FPGA platforms. Journal of Real-Time Image Processing, 2008. 14 pages

    Google Scholar 

  33. Salgo IS. Three-dimensional echocardiographic technology. Cardiol Clin 25:231–239, 2007.

    Article  Google Scholar 

  34. Shams R and Barnes N, Speeding up mutual information computation using NVIDIA CUDA hardware, in Proc. Digital Image Computing: Techniques and Applications (DICTA), Adelaide, Australia, pp. 555âA˘ Ş560, 2007.

    Google Scholar 

  35. Shekhar R, Walimbe V, Raja S, Zagrodsky V, Kanvinde M, Wu G, Bybel B, âA˘ IJAutomated Three-Dimensional Elastic Registration of Whole-Body PET and CT from Separate or Combined Scanners,â˘A ˙I Journal of Nuclear Medicine, 46(9):1488–96, 2005.

    Google Scholar 

  36. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1(2):113–22, 1982.

    Article  Google Scholar 

  37. Singh A, Terzopoulos D, Goldgof DB, Sons JW, Deformable Models in Medical Image Analysis, 1998.

    Google Scholar 

  38. Sikdar S, Managuli R, Gong L, Shamdasani V, Mitake T, Hayashi T, Kim Y. A single mediaprocessor-based programmable ultrasound system. IEEE Trans Inf Technol Biomed. 7(1):64–70, 2003.

    Article  Google Scholar 

  39. Smith SW, Pavy HGJ, and von Ramm OT. High-speed ultrasound volumetric imaging system-I: Transducer design and beam steering. IEEE Trans Ultrason Ferroelectr Freq Control 38:100–108, 1991.

    Article  Google Scholar 

  40. Sonka M, Fitzpatrick, JM. Handbook of medical imaging. Volume 2: Medical image processing and analysis. SPIE Press, Bellingham, WA, 2000.

    Book  Google Scholar 

  41. Suri JS, Setarehdan SK, Singh S. Advanced Algorithmic Approaches to Medical Image Segmentation: State Of The Art Applications in Cardiology, Neurology, Mammography and Pathology, Springer; Ed 1, 2002.

    Google Scholar 

  42. Wester HJ. Nuclear imaging probes: from bench to bedside. Clin Cancer Res. vol. 13(12):3470–81, 2007.

    Article  Google Scholar 

  43. Walimbe V, Zagrodsky V, Shekhar R, Fully automatic segmentation of left ventricular myocardium in real-time three-dimensional echocardiography, Proceedings of SPIE (Medical Imaging 2006, San Diego, California, USA), 2006.

    Google Scholar 

  44. Walimbe V, Garcia M, Lalude O, Thomas J, Shekhar R, Quantitative real-time threedimensional stress echocardiography: A preliminary investigation of feasibility and effectiveness. Journal of the American Society of Echocardiography, 20(1):13–22, 2007

    Article  Google Scholar 

  45. Zagrodsky V, Phelan M, Shekhar R, Automated detection of a blood pool in ultrasound images of abdominal trauma, Ultrasound in Medicine and Biology, vol. 33(11), pp. 1720–1726, 2007.

    Article  Google Scholar 

  46. Zagrodsky V, Walimbe V, Castro-Pareja CR, Qin J, Song JM, Shekhar R, Registration-assisted segmentation of real-time 3D echocardiographic data using deformable models, IEEE Transactions on Medical Imaging, 24(9):1089–99, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Shekhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shekhar, R., Walimbe, V., Plishker, W. (2010). Medical Image Processing. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6345-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6345-1_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6344-4

  • Online ISBN: 978-1-4419-6345-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics