Skip to main content

Functional Influence-Based Approach to Identify Overlapping Modules in Biological Networks

  • Chapter
  • First Online:
Link Mining: Models, Algorithms, and Applications
  • 2463 Accesses

Abstract

The inherent, dynamic, and structural behaviors of complex biological networks in a topological perspective have been widely studied recently. These studies have attempted to discover hidden functional knowledge on a system level since biological networks provide insights into the underlying mechanisms of biological processes and molecular functions within a cell. Functional modules can be identified from biological networks as a sub-network whose components are highly associated with each other through links. Conventional graph-theoretic algorithms had a limitation in efficiency and accuracy on functional modules detection because of complex connectivity and overlapping modules. Whereas partition-based or hierarchical clustering methods produce pairwise disjoint clusters, density-based clustering methods that search densely connected sub-networks are able to generate overlapping clusters. However, they are not well applicable to identifying functional modules from typically sparse biological networks. Recently proposed functional influence-based approach effectively handles the complex but sparse biological networks, generating large-sized overlapping modules. This approach is based on the functional influence model, which quantifies the influence of a source vertex on each target vertex. The experiment with a real protein interaction network in yeast shows that this approach has better performance than other competing methods. A better understanding of higher-order organizations that are identified by functional influence patterns in biological networks can be explored in many practical biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 7: 207, 2006.

    Article  PubMed  Google Scholar 

  2. V. Arnau, S. Mars, and I. Marin. Iterative cluster analysis of protein interaction data. Bioinformatics, 21: 364–378, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. G. D. Bader, and C. W. Hogue. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4: 2, 2003.

    Article  PubMed  Google Scholar 

  4. A.-L. Barabasi, and Z. N. Oltvai. Network biology: understanding the cell’s functional organization. Nature Reviews: Genetics, 5, 101–113, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani. The architecture of complex weighted networks. Proceedings of the National Academy of Science USA, 101, 3747–3752, 2004.

    Article  CAS  Google Scholar 

  6. B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz, M. Livstone, R. Oughtred, D. H. Lackner, J. Bahler, V. Wood, K. Dolinski, and M. Tyers. The BioGRID interaction database: 2008 update. Nucleic Acids Research, 36, D637–D640, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. S. Brohee, and J. van Helden. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics, 7, 488, 2006.

    Article  PubMed  Google Scholar 

  8. C. Brun, C. Herrmann, and A. Guenoche. Clustering proteins from interaction networks for the prediction of cellular functions. BMC Bioinformatics, 5, 95, 2004.

    Article  PubMed  Google Scholar 

  9. D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling, N. Zhang, G. Li, and R. Chen. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acid Research, 31, 2443–2450, 2003.

    Article  CAS  Google Scholar 

  10. A. Chatr-aryamontri, A. Ceol, L. Montecchi-Palazzi, G. Nardelli, M. V. Schneider, L. Castagnoli, and G. Cesareni. MINT: the Molecular INTeraction database. Nucleic Acid Research, 35, D572–D574, 2007.

    Article  CAS  Google Scholar 

  11. Y.-R. Cho, W. Hwang, M. Ramanathan, and A. Zhang. Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics, 8, 265, 2007.

    Article  PubMed  Google Scholar 

  12. Y.-R. Cho, W. Hwang, and A. Zhang. Optimizing flow-based modularization by iterative centroid search in protein interaction networks. In Proceedings of 7th IEEE Symposium on Bioinformatics and Bioengineering (BIBE), pages 342–349, 2007.

    Google Scholar 

  13. Y.-R. Cho, L. Shi, and A. Zhang. flowNet: Flow-based approach for efficient analysis of complex biological networks. In Proceedings of 9th IEEE International Conference on Data Mining (ICDM), pages 91–100, 2009.

    Google Scholar 

  14. I. Derenyi, G. Palla, and T. Vicsek. Clique percolation in random networks. Physical Review Letters, 94, 160202, 2005.

    Article  PubMed  Google Scholar 

  15. S. Van Dongen. A new clustering algorithm for graphs. Technical Report, National Research Institute for Mathematics and Computer Science in the Netherlands, INS-R0010, 2000.

    Google Scholar 

  16. R. Dunn, F. Dudbridge, and C. M. Sanderson. The use of edge-betweenness clustering to investigate biological function in protein interaction networks. BMC Bioinformatics, 6, 39, 2005.

    Article  PubMed  Google Scholar 

  17. A. J. Enright, S. van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 30, 1575–1584, 2002.

    Article  PubMed  CAS  Google Scholar 

  18. M. Girvan, and M. E. J. Newman. Community structure in social and biological networks. Proceedings of the National Academy of Science USA, 99, 7821–7826, 2002.

    Article  CAS  Google Scholar 

  19. The Gene Ontology Consortium. The Gene Ontology project in 2008. Nucleic Acids Research, 36, D440–D444, 2008.

    Article  Google Scholar 

  20. D. S. Goldberg, and F. P. Roth. Assessing experimentally derived interactions in a small world. Proceedings of the National Academy of Science USA, 100, 4372–4376, 2003.

    Article  CAS  Google Scholar 

  21. E. Hartuv, and R. Shamir. A clustering algorithm based on graph connectivity. Information Processing Letters, 76, 175–181, 2000.

    Article  Google Scholar 

  22. L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to modular cell biology. Nature, 402, c47–c52, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. P. Holme, M. Huss, and H. Jeong. Subnetwork hierarchies of biochemical pathways. Bioinformatics, 19, 532–538, 2003.

    Article  PubMed  CAS  Google Scholar 

  24. H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. Lethality and centrality in protein networks. Nature, 411, 41–42, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. S. Kerrien, et al. IntAct–-open source resource for molecular interaction data. Nucleic Acids Research, 35, D561–D565, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. A. D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based clustering. Bioinformatics, 20, 3013–3020, 2004.

    Article  PubMed  CAS  Google Scholar 

  27. H. W. Mewes, S. Dietmann, D. Frishman, R. Gregory, G. Mannhaupt, K. F. X. Mayer, M. Munsterkotter, A. Ruepp, M. Spannagl, V. Stumptflen, and T. Rattei. MIPS: Analysis and annotation of genome information in 2007. Nucleic Acid Research, 36, D196–D201, 2008.

    Article  CAS  Google Scholar 

  28. M. E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted networks and centrality. Physical Review E, 64, 016132, 2001.

    Article  CAS  Google Scholar 

  29. M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical Review E, 69, 066133, 2004.

    Article  CAS  Google Scholar 

  30. G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435, 814–818, 2005.

    Article  PubMed  CAS  Google Scholar 

  31. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identifying communities in networks. Proceedings of the National Academy of Science USA, 101, 2658–2663, 2004.

    Article  CAS  Google Scholar 

  32. P. Resnik. Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of 14th International Joint Conference on Artificial Intelligence, pages 448–453, 1995

    Google Scholar 

  33. A. W. Rives, and T. Galitski. Modular organization of cellular networks. Proceedings of the National Academy of Science USA, 100, 1128–1133, 2003.

    Article  CAS  Google Scholar 

  34. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and D. Eisenberg. The database of interacting proteins: 2004 update. Nucleic Acid Research, 32, D449–D451, 2004.

    Article  CAS  Google Scholar 

  35. M. P. Samanta, and S. Liang. Predicting protein functions from redundancies in large-scale protein interaction networks. Proceedings of the National Academy of Science USA, 100, 12579–12583, 2003.

    Article  CAS  Google Scholar 

  36. R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Molecular Systems Biology, 3, 88, 2007.

    Article  PubMed  Google Scholar 

  37. V. Spirin, and L. A. Mirny. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Science USA, 100, 12123–12128, 2003.

    Article  CAS  Google Scholar 

  38. I. V. Tetko, A. Facius, A. Ruepp, and H. W. Mewes. Super paramagnetic clustering of protein sequences. BMC Bioinformatics, 6, 82, 2005.

    Article  PubMed  Google Scholar 

  39. Z. Wang, and J. Zhang. In search of the biological significance of modular structures in protein networks. PLoS Computational Biology, 3, e107, 2007.

    Article  PubMed  Google Scholar 

  40. D. J. Watts, and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442, 1998.

    Article  PubMed  CAS  Google Scholar 

  41. S. Wuchty, and E. Almaas. Peeling the yeast protein network. Proteomics, 5, 444–449, 2005.

    Article  PubMed  CAS  Google Scholar 

  42. A. Zhang. Protein Interaction Networks: Computational Analysis. Cambridge University Press New York, NY, 2009.

    Book  Google Scholar 

  43. E. Zotenko, K. S. Guimaraes, R. Jothi, and T. M. Przytycka. Decomposition of overlapping protein complexes: a graph theoretical method for analyzing static and dynamic protein associations. Algorithms for Molecular Biology, 1, 7, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by NSF grant DBI-0234895 and NIH grant I P20 GM067650-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cho, YR., Zhang, A. (2010). Functional Influence-Based Approach to Identify Overlapping Modules in Biological Networks. In: Yu, P., Han, J., Faloutsos, C. (eds) Link Mining: Models, Algorithms, and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6515-8_20

Download citation

Publish with us

Policies and ethics