Abstract
Biopotential signals are routinely monitored in current medical practice for diagnostics of several different disorders. Commonly, patients are connected to a bulky and mains powered instrument, which reduces their mobility and creates discomfort. This limits the acquisition time, prevents the continuous monitoring of patients, and affects the diagnostics of the illness. Therefore, there is a growing demand for low-power and small-size biopotential acquisition systems [1–5].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Park S, and Jayaraman S (2003) Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag. 22(3):41–48, May–June 2003
Gyselinckx B., van Hoof C., Ryckaert J., Yazicioglu R., Fiorini P., Leonov V (2005) Human++: autonomous wireless sensors for body area networks. In: custom integrated circuits conference. Proceedings of the IEEE 2005, 18–21 Sept. 2005. pp 13–19
Mundt C., Montgomery K., Udoh U., Barker V, Thonier G, Tellier A., Ricks R, Darling R, Cagle Y., Cabrol N., Ruoss S., Swain J, Hines J, Kovacs G (2005) A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans vol. 9(3):382–391, Sept. 2005
Paradiso R, Giannicola L, Taccini N (2005) A wearable health care system based on knitted integrated sensors. IEEE Trans Inform Technol Biomed.3:337–344
Gyselinckx B, Vullers R, Hoof C, Ryckaert J, Yazicioglu R Fiorini P, Leonov V (2006) Human++: Emerging technology for body area networks., In: Very large scale integration, 2006 IFIP International Conference, Oct. 2006, pp 175–180
Webster JG (1992) Medical instrumentation: application and design, 2nd edn. Boston (Mass.), Houghton Mifflin
Huhta JC, Webster JG (1973) 60-Hz interference in electrocardiography. IEEE Trans Bio-Med Eng BME-20(2):91–101, March 1973
Van Rijn AC, Kuiper AP, Dankers TE, Grimbergen CA (1996) Low-cost active electrodes improves the resolution in biopotential recordings. IEEE EMBC
Metting van Rijn AC, Peper A, Grimbergen (1990) High-quality recording of bioelectric events; part 1, interference reduction, theory, and practice, Med Biol Eng Comput 28:389–397
Winter BB, Webster JG (1983) Driven-right-leg circuit design. IEEE Trans Bio-Med Eng. BME-30(1):62–66, Jan. 1983
Razavi B (2001) Desing of analog CMOS integrated circuits. McGraw-Hill Science/Engineering Math; 1 Edition (August 15, 2000)
Steyaert M, Sansen W (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes., IEEE J Solid-State Circuit 22(6):1163–1168, Dec 1987
Burr-Brown (1997) INA122: single supply, micropower instrumentation amplifier, online, Oct. 1997
Burke M, Gleeson D (2000) A micropower dry-electrode ECG preamplifier, IEEE T, Bio-Med Eng. 47(2):155–162, Feb. 2000
Pallas-Areny R, Webster J (1993) AC instrumentation amplifier for bioimpedance measurements, IEEE Trans Bio-Med Eng. 40(8):830–833, Aug. 1993
Spinelli E, Martinez N, Mayosky M, Pallas-Areny R (2004) A novel fully differential biopotential amplifier with DC suppression. IEEE Trans Bio-Med Eng. 51(8):1444–1448, Aug 2004
Spinelli E, Pallas-Areny R, Mayosky M 2003 AC-coupled front-end for biopotential measurements. IEEE Trans Bio-Med Eng. 50(3):391–395, March 2003
Huijsing JH (2001) Operational amplifiers: theory and design. Kluwer Academic, Springer; 1 edition (December 2000)
Mancini R Don’t fall in love with one type of instrumentation amp available online: http://www.edn.com/contents/images/217678.pdf
Van Peteghem P, Verbauwhede I, Sansen W (1985) Micropower high performance SC building block for integrated low-level signal processing. IEEE J Solid-State Circuit 20(4):837–844, Aug 1985
Degrauwe M, Vittoz E, Verbauwhede I (1985) A micropower CMOS instrumentation amplifier. EEE J Solid-State Circuits 20(3):805-807, Jun 1985
Enz C, Temes G (1996) Circuit techniques for reducing the effects of opamp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 84(11):1584–1614, Nov 1996
Harrison R, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965, June 2003
Olsson R, Gulari A, Wise K (2003) A fully-integrated bandpass amplifier for extracellular neural recording. In: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference, 20–22 March 2003, pp. 165–168
Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System. IEEE J Solid-State Circuits 42(1):123–133, Jan. 2007
Wu H, Xu PA (2006) 1 V 2.3 μW Biomedical Signal Acquisition IC. In: Proceedings of the 2006 IEEE International Solid-State Circuit Conference, Feb. 5–9, pp. 119–128, 2006
Zou X, Xu X, Yao L, Lian Y (2009) A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip. IEEE J Solid-State Circuits 44(4):1067–1077, April 2009.
Verma N, Shoeb A, Guttag J, and Chandrakasan A (2009) A Micro-power EEG Acquisition SoC with Integrated Seizure Detection Processor for Continuous Patient Monitoring. 2009 Symposium on VLSI Circuits, June 2009.
Menolfi C, Huang Q (1999) A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset. IEEE J Solid State Circuits 34(3):415–420, March 1999
Enz C, Vittoz E, Krummenacher F (1987) A CMOS chopper amplifier. IEEE J Solid-State Circuits 22(3):335–342, June 1987
Menolfi C, Huang Q (1997) A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J Solid State Circuits 32(7)968–976, July 1997.
Menolfi C (2000) Low noise CMOS chopper instrumentation amplifiers for thermoelectric microsensors. Ph.D. dissertation, Swiss Federal Institute of Technology, ETH
Menolfi C and Huang Q (1997), A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J Solid State Circuits 32(7)968–976, July 1997
Eatock F 1973 A monolithic instrumentation amplifier with low input current. Solid-state circuits conference. Digest of technical papers. 1973 IEEE International, XVI: 148–149, Feb 1973
Yazicioglu RF, Merken P, Puers B, Van Hoof C (2008) A 200 μW Eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J Solid State Circuits 43(12):3025–3038, Dec 2008
Fotowat H, Harrison RR, and Gabbiani F (2009) Measuring neural correlates of insect escape behaviors using a miniature telemetry system. In: Proceedings of the 35th annual northeast bioengineering conference, Cambridge, MA
Denison T, Consoer K, Kelly A, Hachenburg A, Santa W (2007) 2.2 μW 97 nV/√Hz, chopper stabilized instrumentation amplifier for EEG detection in chronic implants. In: Solid-state circuits, 2007 IEEE International Conference Digest of Technical Papers, 2007, pp. 162–163
Yazicioglu RF, Merken P, Puers R, Van Hoof C (2007) A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J Solid-State Circuits 42(5):1100–1110, May 2007
Toumazou C, Lidgey FJ, and Makris CA (1989) Current-mode instrumentation amplifier, IEE Colloquium on Current Mode Analogue Circuits, pp. 8/1-8/5, Feb
Krabbe H (1971) A high-performance monolithic instrumentation amplifier. In: Solid-State Circuits Conference. Digest of Technical Papers. 1971 IEEE International XIV:186–187, Feb 1971
Martins R, Selberherr S, Vaz F (1998) A CMOS IC for portable EEG acquisition systems. IEEE T Instrum Meas 47(5):1191–1196, Oct 1998
Jochum T, Denison T, Wolf P (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6
Chae M, Liu W, Yang Z, Chen T, Kim J, Sivaprakasam M, and Yuce MR (2008), A 128-channel 6 mW Wireless Neural Recording IC with On-the-fly Spike Sorting and UWB Transmitter. IEEE Int Solid-State Circuits Conf (ISSCC’08), Feb 2008
A.-T. Avestruz, Santa W, Carlson D, Jensen R, Stanslaski S, Helfenstine A, and Denison T (2008) A 5 μW/Channel spectral analysis IC for chronic bidirectional brain–machine interfaces. IEEE J Solid-State Circuits 43(12)3006–3024, Dec 2008
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Yazicioglu, R.F. (2011). Readout Circuits. In: Yoo, HJ., van Hoof, C. (eds) Bio-Medical CMOS ICs. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6597-4_4
Download citation
DOI: https://doi.org/10.1007/978-1-4419-6597-4_4
Published:
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4419-6596-7
Online ISBN: 978-1-4419-6597-4
eBook Packages: EngineeringEngineering (R0)