Skip to main content

Readout Circuits

  • Chapter
  • First Online:
Bio-Medical CMOS ICs

Part of the book series: Integrated Circuits and Systems ((ICIR))

  • 2849 Accesses

Abstract

Biopotential signals are routinely monitored in current medical practice for diagnostics of several different disorders. Commonly, patients are connected to a bulky and mains powered instrument, which reduces their mobility and creates discomfort. This limits the acquisition time, prevents the continuous monitoring of patients, and affects the diagnostics of the illness. Therefore, there is a growing demand for low-power and small-size biopotential acquisition systems [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park S, and Jayaraman S (2003) Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag. 22(3):41–48, May–June 2003

    Article  Google Scholar 

  2. Gyselinckx B., van Hoof C., Ryckaert J., Yazicioglu R., Fiorini P., Leonov V (2005) Human++: autonomous wireless sensors for body area networks. In: custom integrated circuits conference. Proceedings of the IEEE 2005, 18–21 Sept. 2005. pp 13–19

    Google Scholar 

  3. Mundt C., Montgomery K., Udoh U., Barker V, Thonier G, Tellier A., Ricks R, Darling R, Cagle Y., Cabrol N., Ruoss S., Swain J, Hines J, Kovacs G (2005) A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans vol. 9(3):382–391, Sept. 2005

    Google Scholar 

  4. Paradiso R, Giannicola L, Taccini N (2005) A wearable health care system based on knitted integrated sensors. IEEE Trans Inform Technol Biomed.3:337–344

    Article  Google Scholar 

  5. Gyselinckx B, Vullers R, Hoof C, Ryckaert J, Yazicioglu R Fiorini P, Leonov V (2006) Human++: Emerging technology for body area networks., In: Very large scale integration, 2006 IFIP International Conference, Oct. 2006, pp 175–180

    Google Scholar 

  6. Webster JG (1992) Medical instrumentation: application and design, 2nd edn. Boston (Mass.), Houghton Mifflin

    Google Scholar 

  7. Huhta JC, Webster JG (1973) 60-Hz interference in electrocardiography. IEEE Trans Bio-Med Eng BME-20(2):91–101, March 1973

    Article  Google Scholar 

  8. Van Rijn AC, Kuiper AP, Dankers TE, Grimbergen CA (1996) Low-cost active electrodes improves the resolution in biopotential recordings. IEEE EMBC

    Google Scholar 

  9. Metting van Rijn AC, Peper A, Grimbergen (1990) High-quality recording of bioelectric events; part 1, interference reduction, theory, and practice, Med Biol Eng Comput 28:389–397

    Google Scholar 

  10. Winter BB, Webster JG (1983) Driven-right-leg circuit design. IEEE Trans Bio-Med Eng. BME-30(1):62–66, Jan. 1983

    Article  Google Scholar 

  11. Razavi B (2001) Desing of analog CMOS integrated circuits. McGraw-Hill Science/Engineering Math; 1 Edition (August 15, 2000)

    Google Scholar 

  12. Steyaert M, Sansen W (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes., IEEE J Solid-State Circuit 22(6):1163–1168, Dec 1987

    Article  Google Scholar 

  13. Burr-Brown (1997) INA122: single supply, micropower instrumentation amplifier, online, Oct. 1997

    Google Scholar 

  14. Burke M, Gleeson D (2000) A micropower dry-electrode ECG preamplifier, IEEE T, Bio-Med Eng. 47(2):155–162, Feb. 2000

    Article  Google Scholar 

  15. Pallas-Areny R, Webster J (1993) AC instrumentation amplifier for bioimpedance measurements, IEEE Trans Bio-Med Eng. 40(8):830–833, Aug. 1993

    Article  Google Scholar 

  16. Spinelli E, Martinez N, Mayosky M, Pallas-Areny R (2004) A novel fully differential biopotential amplifier with DC suppression. IEEE Trans Bio-Med Eng. 51(8):1444–1448, Aug 2004

    Article  Google Scholar 

  17. Spinelli E, Pallas-Areny R, Mayosky M 2003 AC-coupled front-end for biopotential measurements. IEEE Trans Bio-Med Eng. 50(3):391–395, March 2003

    Article  Google Scholar 

  18. Huijsing JH (2001) Operational amplifiers: theory and design. Kluwer Academic, Springer; 1 edition (December 2000)

    Google Scholar 

  19. Mancini R Don’t fall in love with one type of instrumentation amp available online: http://www.edn.com/contents/images/217678.pdf

  20. Van Peteghem P, Verbauwhede I, Sansen W (1985) Micropower high performance SC building block for integrated low-level signal processing. IEEE J Solid-State Circuit 20(4):837–844, Aug 1985

    Article  Google Scholar 

  21. Degrauwe M, Vittoz E, Verbauwhede I (1985) A micropower CMOS instrumentation amplifier. EEE J Solid-State Circuits 20(3):805-807, Jun 1985

    Article  Google Scholar 

  22. Enz C, Temes G (1996) Circuit techniques for reducing the effects of opamp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 84(11):1584–1614, Nov 1996

    Article  Google Scholar 

  23. Harrison R, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965, June 2003

    Article  Google Scholar 

  24. Olsson R, Gulari A, Wise K (2003) A fully-integrated bandpass amplifier for extracellular neural recording. In: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference, 20–22 March 2003, pp. 165–168

    Google Scholar 

  25. Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System. IEEE J Solid-State Circuits 42(1):123–133, Jan. 2007

    Article  Google Scholar 

  26. Wu H, Xu PA (2006) 1 V 2.3 μW Biomedical Signal Acquisition IC. In: Proceedings of the 2006 IEEE International Solid-State Circuit Conference, Feb. 5–9, pp. 119–128, 2006

    Google Scholar 

  27. Zou X, Xu X, Yao L, Lian Y (2009) A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip. IEEE J Solid-State Circuits 44(4):1067–1077, April 2009.

    Article  Google Scholar 

  28. Verma N, Shoeb A, Guttag J, and Chandrakasan A (2009) A Micro-power EEG Acquisition SoC with Integrated Seizure Detection Processor for Continuous Patient Monitoring. 2009 Symposium on VLSI Circuits, June 2009.

    Google Scholar 

  29. Menolfi C, Huang Q (1999) A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset. IEEE J Solid State Circuits 34(3):415–420, March 1999

    Article  Google Scholar 

  30. Enz C, Vittoz E, Krummenacher F (1987) A CMOS chopper amplifier. IEEE J Solid-State Circuits 22(3):335–342, June 1987

    Article  Google Scholar 

  31. Menolfi C, Huang Q (1997) A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J Solid State Circuits 32(7)968–976, July 1997.

    Article  Google Scholar 

  32. Menolfi C (2000) Low noise CMOS chopper instrumentation amplifiers for thermoelectric microsensors. Ph.D. dissertation, Swiss Federal Institute of Technology, ETH

    Google Scholar 

  33. Menolfi C and Huang Q (1997), A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J Solid State Circuits 32(7)968–976, July 1997

    Article  Google Scholar 

  34. Eatock F 1973 A monolithic instrumentation amplifier with low input current. Solid-state circuits conference. Digest of technical papers. 1973 IEEE International, XVI: 148–149, Feb 1973

    Google Scholar 

  35. Yazicioglu RF, Merken P, Puers B, Van Hoof C (2008) A 200 μW Eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J Solid State Circuits 43(12):3025–3038, Dec 2008

    Article  Google Scholar 

  36. Fotowat H, Harrison RR, and Gabbiani F (2009) Measuring neural correlates of insect escape behaviors using a miniature telemetry system. In: Proceedings of the 35th annual northeast bioengineering conference, Cambridge, MA

    Google Scholar 

  37. Denison T, Consoer K, Kelly A, Hachenburg A, Santa W (2007) 2.2 μW 97 nV/√Hz, chopper stabilized instrumentation amplifier for EEG detection in chronic implants. In: Solid-state circuits, 2007 IEEE International Conference Digest of Technical Papers, 2007, pp. 162–163

    Google Scholar 

  38. Yazicioglu RF, Merken P, Puers R, Van Hoof C (2007) A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J Solid-State Circuits 42(5):1100–1110, May 2007

    Article  Google Scholar 

  39. Toumazou C, Lidgey FJ, and Makris CA (1989) Current-mode instrumentation amplifier, IEE Colloquium on Current Mode Analogue Circuits, pp. 8/1-8/5, Feb

    Google Scholar 

  40. Krabbe H (1971) A high-performance monolithic instrumentation amplifier. In: Solid-State Circuits Conference. Digest of Technical Papers. 1971 IEEE International XIV:186–187, Feb 1971

    Google Scholar 

  41. Martins R, Selberherr S, Vaz F (1998) A CMOS IC for portable EEG acquisition systems. IEEE T Instrum Meas 47(5):1191–1196, Oct 1998

    Article  Google Scholar 

  42. Jochum T, Denison T, Wolf P (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6

    Google Scholar 

  43. Chae M, Liu W, Yang Z, Chen T, Kim J, Sivaprakasam M, and Yuce MR (2008), A 128-channel 6 mW Wireless Neural Recording IC with On-the-fly Spike Sorting and UWB Transmitter. IEEE Int Solid-State Circuits Conf (ISSCC’08), Feb 2008

    Google Scholar 

  44. A.-T. Avestruz, Santa W, Carlson D, Jensen R, Stanslaski S, Helfenstine A, and Denison T (2008) A 5 μW/Channel spectral analysis IC for chronic bidirectional brain–machine interfaces. IEEE J Solid-State Circuits 43(12)3006–3024, Dec 2008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Firat Yazicioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yazicioglu, R.F. (2011). Readout Circuits. In: Yoo, HJ., van Hoof, C. (eds) Bio-Medical CMOS ICs. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6597-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6597-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6596-7

  • Online ISBN: 978-1-4419-6597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics