Abstract
There are many practical examples of social networks such as friendship networks or co-authorship networks. Detecting dense subnetworks from such networks are important for finding similar people and understanding the structure of factions. This chapter explains the definitions of communities, criteria for evaluating detected communities, methods for community detection, and actual tools for community detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barber, M. J., Modularity and community detection in bipartite networks, Physical Review E, 76(066102), 1–9, 2007
Chakrabarti, D., Kumar, R., Tomkins, A., Evolutionary Clustering, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD06), pp. 554–560, 2006
Clauset, A., Fast modularity community structure inference algorithm, http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
Clauset, A., Newman, M. E. J., Moore, C., Finding community structure in very large networks, Physical Review E, 70(066111), 1–6, 2004
Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A., Comparing community structure identification, Journal of Statistical Mechanics, P09008, 1–10, 2005
Fortunato, S., Community detection in graphs, Physics Reports, 486, 75–174, 2010
Fortunato, S., Barthelemy, M., Resolution limit in community detection, Proceedings of the National Academy of Sciences (PNAS), 104(1), 36–41, 2007
Girvan, M., Newman, M. E. J., Community structure in social and biological networks Proceedings of the National Academy of Sciences (PNAS), 99(12), 7821–7826, 2002
Guimera, R., Sales-Pardo, M., Amaral, L. A. N., Module identification in bipartite and directed networks, Physical Review E, 76(036102), 1–8, 2007
Leskovec, J., Lang, K. J., Dasgupta, A., Mahoney, M. W., community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, arXiv:0810.1355, http://arxiv.org/abs/0810.1355, 2008
Lin, Y.-R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B. L., FacetNet: A Framework for Analyzing Communities and Their Evolutions in Dynamic Networks, Proceedings of the 17th International World Wide Web Conference (WWW2008), pp. 685–694, 2008
Newman, M. E. J., Modularity and community structure in networks, Proceedings of the National Academy of Sciences (PNAS), 103(23), 8577–8582, 2006
Newman, M. E. J., Network data, http://www-personal.umich.edu/~mejn/netdata/
Newman, M.E.J., Girvan, M., Finding and evaluating community structure in networks, Physical Review E, 69(026113), 1–16, 2004
Palla, G., DerE’nyi, I., Farkas, I., Vicsek, T., Uncovering the overlapping community structure of complex networks in nature and society, Nature 435, 814–818, 2005
Vakali, A., Kompatsiaris, I., Detecting, understanding and exploiting web communities, http://www2009.org/tutorials.html, 2009
Wakita, K., Ken Wakita – Community analysis software, http://www.is.titech.ac.jp/~wakita/en/software/community-analysis-so-ftware/
Xu, J., Chen, H., The topology of dark networks, Communications of the ACM, 51(10), 58–65, 2008
Zhou, H., Network landscape from a Brownian particlefs perspective, Physical Review E 67(041908), 1–5, 2003
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Murata, T. (2010). Detecting Communities in Social Networks. In: Furht, B. (eds) Handbook of Social Network Technologies and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7142-5_12
Download citation
DOI: https://doi.org/10.1007/978-1-4419-7142-5_12
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-7141-8
Online ISBN: 978-1-4419-7142-5
eBook Packages: Computer ScienceComputer Science (R0)