Skip to main content

Detecting Communities in Social Networks

  • Chapter
  • First Online:
Handbook of Social Network Technologies and Applications
  • 3392 Accesses

Abstract

There are many practical examples of social networks such as friendship networks or co-authorship networks. Detecting dense subnetworks from such networks are important for finding similar people and understanding the structure of factions. This chapter explains the definitions of communities, criteria for evaluating detected communities, methods for community detection, and actual tools for community detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barber, M. J., Modularity and community detection in bipartite networks, Physical Review E, 76(066102), 1–9, 2007

    MathSciNet  Google Scholar 

  2. Chakrabarti, D., Kumar, R., Tomkins, A., Evolutionary Clustering, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD06), pp. 554–560, 2006

    Google Scholar 

  3. Clauset, A., Fast modularity community structure inference algorithm, http://www.cs.unm.edu/~aaron/research/fastmodularity.htm

  4. Clauset, A., Newman, M. E. J., Moore, C., Finding community structure in very large networks, Physical Review E, 70(066111), 1–6, 2004

    Google Scholar 

  5. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A., Comparing community structure identification, Journal of Statistical Mechanics, P09008, 1–10, 2005

    Google Scholar 

  6. Fortunato, S., Community detection in graphs, Physics Reports, 486, 75–174, 2010

    Article  MathSciNet  Google Scholar 

  7. Fortunato, S., Barthelemy, M., Resolution limit in community detection, Proceedings of the National Academy of Sciences (PNAS), 104(1), 36–41, 2007

    Google Scholar 

  8. Girvan, M., Newman, M. E. J., Community structure in social and biological networks Proceedings of the National Academy of Sciences (PNAS), 99(12), 7821–7826, 2002

    Google Scholar 

  9. Guimera, R., Sales-Pardo, M., Amaral, L. A. N., Module identification in bipartite and directed networks, Physical Review E, 76(036102), 1–8, 2007

    Google Scholar 

  10. Leskovec, J., Lang, K. J., Dasgupta, A., Mahoney, M. W., community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, arXiv:0810.1355, http://arxiv.org/abs/0810.1355, 2008

  11. Lin, Y.-R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B. L., FacetNet: A Framework for Analyzing Communities and Their Evolutions in Dynamic Networks, Proceedings of the 17th International World Wide Web Conference (WWW2008), pp. 685–694, 2008

    Google Scholar 

  12. Newman, M. E. J., Modularity and community structure in networks, Proceedings of the National Academy of Sciences (PNAS), 103(23), 8577–8582, 2006

    Google Scholar 

  13. Newman, M. E. J., Network data, http://www-personal.umich.edu/~mejn/netdata/

  14. Newman, M.E.J., Girvan, M., Finding and evaluating community structure in networks, Physical Review E, 69(026113), 1–16, 2004

    Google Scholar 

  15. Palla, G., DerE’nyi, I., Farkas, I., Vicsek, T., Uncovering the overlapping community structure of complex networks in nature and society, Nature 435, 814–818, 2005

    Article  Google Scholar 

  16. Vakali, A., Kompatsiaris, I., Detecting, understanding and exploiting web communities, http://www2009.org/tutorials.html, 2009

  17. Wakita, K., Ken Wakita – Community analysis software, http://www.is.titech.ac.jp/~wakita/en/software/community-analysis-so-ftware/

  18. Xu, J., Chen, H., The topology of dark networks, Communications of the ACM, 51(10), 58–65, 2008

    Article  Google Scholar 

  19. Zhou, H., Network landscape from a Brownian particlefs perspective, Physical Review E 67(041908), 1–5, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murata, T. (2010). Detecting Communities in Social Networks. In: Furht, B. (eds) Handbook of Social Network Technologies and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7142-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7142-5_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7141-8

  • Online ISBN: 978-1-4419-7142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics