Skip to main content

Concept Discovery in Youtube.com Using Factorization Method

  • Chapter
  • First Online:
Handbook of Social Network Technologies and Applications

Abstract

Social media are not limited to text but also multimedia. Dailymotion, YouTube, and MySpace are examples of successful sites which allow users to share videos and interact among themselves. Due to the huge amount of videos, categorizing videos with similar contents can help users to search videos more efficiently. Unlike the traditional approach to group videos into some predefined categories, we propose to facilitate video searching with clustering from comment-based matrix factorization and to improve indexing via the generation of new concept words. Factorized component entropies are introduced for handling the difficult problem of vocabulary construction for concept discovery in social media. Since the categorization is learnt from users feedback, it can accurately represent the user sentiment on the videos. Experiments conducted by using empirical data collected from YouTube shows the effectiveness of our proposed methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.bebo.com

  2. http://www.dailymotion.com

  3. http://www.facebook.com

  4. http://www.flickr.com

  5. http://www.myspace.com

  6. http://www.youtube.com

  7. Usa today. youtube serves up 100 million videos a day online

    Google Scholar 

  8. F. Benevenuto, F. Duarte, T. Rodrigues, V. A. Almeida, J. M. Almeida, and K. W. Ross. Understanding video interactions in youtube. In MM ’08: Proceeding of the 16th ACM international conference on Multimedia, pages 761–764, ACM, NY, 2008

    Google Scholar 

  9. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, 2003

    MATH  Google Scholar 

  10. X. Cheng, C. Dale, and J. Liu. Understanding the characteristics of internet short video sharing: Youtube as a case study. In CoRR abs, Jul 2007

    Google Scholar 

  11. G. Geisler and S. Burns. Tagging video: conventions and strategies of the youtube community. In JCDL ’07: Proceedings of the 7th ACM/IEEE-CS joint conference on Digital libraries, pages 480–480, ACM, NY, 2007

    Google Scholar 

  12. L. Guo, S. Jiang, L. Xiao, and X. Zhang. Fast and low-cost search schemes by exploiting localities in p2p networks. J. Parallel Distrib. Comput., 65(6):729–742, 2005

    Article  Google Scholar 

  13. M. J. Halvey and M. T. Keane. Exploring social dynamics in online media sharing. In WWW ’07: Proceedings of the 16th international conference on World Wide Web, pages 1273–1274, ACM, NY, 2007

    Google Scholar 

  14. M. Heckner, T. Neubauer, and C. Wolff. Tree, funny, to read, google: what are tags supposed to achieve? a comparative analysis of user keywords for different digital resource types. In SSM ’08: Proceeding of the 2008 ACM workshop on Search in social media, pages 3–10, ACM, NY, 2008

    Google Scholar 

  15. J. Heer and D. Boyd. Vizster: Visualizing online social networks. IEEE Symposium on Information Visualization, 2005

    Google Scholar 

  16. C. M. C. Y. Julia Stoyanovich, Sihem Amer-Yahia. Leveraging tagging to model user interests in del.icio.us. In AAAI ’08: Proceedings of the 2008 AAAI Social Information Spring Symposium. AAAI, 2008

    Google Scholar 

  17. P. P. Kotsiantis S., Kanellopoulos D. Multimedia mining. In WSEAS Trans. Syst., 3(10): 3263–3268, 2004

    Google Scholar 

  18. J. K.-W. Leung, C. H. Li, and T. K. Ip. Commentary-based video categorization and concept discovery. In Proceeding of the 2nd ACM Workshop on Social Web Search and Mining (Hong Kong, China, November 02 - 02, 2009), SWSM ’09, pages 49–56, ACM, New York, NY, 2009

    Google Scholar 

  19. X. Li, L. Guo, and Y. E. Zhao. Tag-based social interest discovery. In WWW ’08: Proceeding of the 17th international conference on World Wide Web, pages 675–684, ACM, NY, 2008

    Google Scholar 

  20. N. Oza, J. P. Castle, and J. Stutz. Classification of aeronautics system health and safety documents. Trans. Sys. Man Cyber Part C, 39(6):670–680, 2009

    Article  Google Scholar 

  21. J. Z. Pan, S. Taylor, and E. Thomas. Reducing ambiguity in tagging systems with folksonomy search expansion. In ESWC 2009 Heraklion: Proceedings of the 6th European Semantic Web Conference on The Semantic Web, pages 669–683, Springer, Berlin, 2009

    Google Scholar 

  22. C. G. R. A. A. F. L. Rodrygo L. T. Santos, Bruno P. S. Rocha. Characterizing the youtube video-sharing community. 2007

    Google Scholar 

  23. M. F. Schwartz and D. C. M. Wood. Discovering shared interests using graph analysis. Commun. ACM, 36(8):78–89, 1993

    Article  Google Scholar 

  24. A. S. Sharma and M. Elidrisi. Classification of multi-media content (video’s on youtube) using tags and focal points. Unpublished manuscript

    Google Scholar 

  25. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using interest-based locality in peer-to-peer systems. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE, 3:2166–2176, 2003

    Google Scholar 

  26. S. Tsekeridou and I. Pitas. Content-based video parsing and indexing based on audio-visual interaction, 2001

    Google Scholar 

  27. W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization. In SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pages 267–273, ACM, NY, 2003

    Google Scholar 

  28. L. Yang, J. Liu, X. Yang, and X.-S. Hua. Multi-modality web video categorization. In MIR ’07: Proceedings of the international workshop on Workshop on multimedia information retrieval, pages 265–274, ACM, NY, 2007

    Google Scholar 

  29. O. R. Zaïane, J. Han, Z.-N. Li, S. H. Chee, and J. Y. Chiang. Multimediaminer: a system prototype for multimedia data mining. In SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD international conference on Management of data, pages 581–583, ACM, NY, 1998

    Google Scholar 

  30. L. Zunxiong, Z. Lihui, and Z. Heng. Appearance-based subspace projection techniques for face recognition. Intelligent Interaction and Affective Computing, International Asia Symposium on, pages 202–205, 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice Kwan-Wai Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leung, J.KW., Li, C.H. (2010). Concept Discovery in Youtube.com Using Factorization Method. In: Furht, B. (eds) Handbook of Social Network Technologies and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7142-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7142-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7141-8

  • Online ISBN: 978-1-4419-7142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics