Skip to main content

Optimizing Targeting of Intrusion Detection Systems in Social Networks

  • Chapter
  • First Online:
Handbook of Social Network Technologies and Applications

Abstract

Internet users communicate with each other in various ways: by Emails, instant messaging, social networking, accessing Web sites, etc. In the course of communicating, users may unintentionally copy files contaminated with computer viruses and worms [1, 2] to their computers and spread them to other users [3]. (Hereafter we will use the term “threats”, rather than computer viruses and computer worms). The Internet is the chief source of these threats [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Weaver, V. Paxson, S. Staniford, R. Cunningham, “A taxonomy of computer worms”, In The First ACM Workshop on Rapid Malcode (WORM), 2003.

    Google Scholar 

  2. S. Staniford, V. Paxson, N. Weaver, “How to own the internet in your spare time”, Proceedings of the 11th USENIX security symposium, 2002.

    Google Scholar 

  3. J. Balthrop, S. Forrest, M. E. J. Newman, M. M. Williamson, “Technological networks and the spread of computer viruses”, Science 304, 527, 2004.

    Article  Google Scholar 

  4. Symantec Internet Security Threat Report, Jan–June 2004.

    Google Scholar 

  5. X. Zhang, C. Li, W. Zheng, “Intrusion prevention system design”, Proceedings – The fourth international conference on computer and information technology, 386–390, 2004.

    Google Scholar 

  6. Y. Tang, S. Chen, “Defending against internet worms. A signature based approach”, IEEE INFOCOM, 2005.

    Google Scholar 

  7. A. Gupta, R. Sekar, “An approach for detecting self-propagating email using anomaly detection”, In Proceedings of the international symposium on recent advances in intrusion detection, Sep 2003.

    Book  Google Scholar 

  8. V. Yegneswaran, P. Barford, S. Jha, “Global intrusion detection in the DOMINO overlay system”, In Proceedings of NDSS, San Diego, CA, 2004.

    Google Scholar 

  9. P. Blackburn, “Quarantining DHCP clients to reduce worm infection risk”, http://www.giac.org/certified professionals/practicals/gsec/3472.php

  10. R. Pastor-Satorras, A. Vespignani, “Epidemics and immunization in scale-free networks”, http://arxiv.org/abs/cond-mat/0205260, 2002.

  11. M. Tubi, R. Puzis, Y. Elovici, “Deployment of DNIDS in social networks”, IEEE ISI, 2007.

    Google Scholar 

  12. R. Huerta, L. S. Tsimring, “Contact tracing and epidemics control in social networks”, Physical Review E, 66, 056115, 2002.

    Article  Google Scholar 

  13. M. E. J. Newman, “The structure and function of complex networks”, SIAM Review, 45(2), 167–256, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. C. Zou, D. Towsley, W. Gong, “Email virus propagation modeling and analysis”, Technical Report TR-CSE-03–04, University of Massachussets, Amherst, 2004.

    Google Scholar 

  15. A. L. Barabasi, R. Albert, H. Jeong, “Scale-free characteristics of random networks: the topology of the world-wide web”, Physica A 281, 69–77, 2000.

    Article  Google Scholar 

  16. A. L. Barabasi, R. Albert, “Emergence of scaling in random networks”, Science 286, 509, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. E. J. Newman, “The spread of epidemic disease on networks”, Physical Review. E, 66, 016128, 2002.

    Article  MathSciNet  Google Scholar 

  18. R. Pastor-Satorras, A. Vespignani, “Epidemic spreading in scale-free networks”, Physical Review Letters, 86(14), 3200–3203, 2001.

    Article  Google Scholar 

  19. D. H. Zanette, M. Kuperman, “Effects of immunization in small-world epidemics”. Physica A, 309, 445–452, 2002.

    Article  MATH  Google Scholar 

  20. R. Pastor-Satorras, A. Vespignani, “Immunization of complex networks”, Physical Review E, 65, 036104, 2002.

    Article  Google Scholar 

  21. J. R. Tyler, D. M. Wilkinson, B. A. Huberman, “Email as spectroscopy: automated discovery of community structure within organizations. Communities and technologies”, M. Huysman, E. Wenger, V. Wulf (Eds), pp. 81–95, 2003.

    Google Scholar 

  22. J. Scott, “Social network analysis: a handbook”, Sage Publications, London, 2000.

    Google Scholar 

  23. S. P. Borgatti, M. G. Everett, “A graph-theoretic perspective on centrality”, Social Networks, 28(4), 466–484, 2006.

    Article  Google Scholar 

  24. L. C. Freeman, “Centrality in social networks conceptual clarification”, Social Networks, 1, 215–239, 1979.

    Article  Google Scholar 

  25. M. G. Everett, S. P. Borgatti, “The centrality of groups and classes”, Mathematical Sociology, 23(3), 181–201, 1999.

    Article  MATH  Google Scholar 

  26. K. Park, “Scalable protection against ddos and worm attacks. DARPA ATO FTN project AFRL contract F30602–01–2–0530”, Purdue University, West LaFayette, 2004.

    Google Scholar 

  27. S.P. Borgatti, “Centrality and AIDS”, Connections, 18(1), 112–114, 1995.

    Google Scholar 

  28. F. Harary, R. Z. Norman, D. Cartwright, “Structural models. An introduction to the theory of directed graphs”, John Wiley and Sons, New York, 1965.

    Google Scholar 

  29. L.C. Freeman, “A set of measuring centrality based on betweenness”, Sociometry 40, 35–41, 1977.

    Article  Google Scholar 

  30. M. E. J. Newman, “Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality”, Physical Review E, 64, 016132, 2001.

    Article  Google Scholar 

  31. U. Brandes, “A faster algorithm for betweenness centrality”, Journal of Mathematical Sociology, 25(2), 163–177, 2001.

    Article  MATH  Google Scholar 

  32. R. Puzis, Y. Elovici, S. Dolev. “Fast algorithm for successive computation of group betweenness centrality”, Physical Review E, 76(5), 056709, 2007.

    Article  MathSciNet  Google Scholar 

  33. M. E. J. Newman, “A measure of betweenness centrality based on random walks”, http://arXiv.org/abs/cond-mat/0309045, 2003.

  34. R. G. Downey, M. R. Fellows, “Parametrized computational feasibility”, Feasible Mathematics, 2, 219–244, 1995.

    Article  MATH  Google Scholar 

  35. R. Puzis, M. D. Klippel, Y. Elovici, S. Dolev, “Optimization of NIDS placement for protection of intercommunicating critical infrastructures”, Springer LNCS, EuroISI, 2008.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Puzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Puzis, R., Tubi, M., Elovici, Y. (2010). Optimizing Targeting of Intrusion Detection Systems in Social Networks. In: Furht, B. (eds) Handbook of Social Network Technologies and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7142-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7142-5_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7141-8

  • Online ISBN: 978-1-4419-7142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics