Skip to main content

Perspectives on Social Network Analysis for Observational Scientific Data

  • Chapter
  • First Online:
Handbook of Social Network Technologies and Applications

Abstract

This chapter is a conceptual look at data quality issues that arise during scientific observations and their impact on social network analysis. We provide examples of the many types of incompleteness, bias and uncertainty that impact the quality of social network data. Our approach is to leverage the insights and experience of observational behavioral scientists familiar with the challenges of making inference when data are not complete, and suggest avenues for extending these to relational data questions. The focus of our discussion is on network data collection using observational methods because they contain high dimensionality, incomplete data, varying degrees of observational certainty, and potential observer bias. However, the problems and recommendations identified here exist in many other domains, including online social networks, cell phone networks, covert networks, and disease transmission networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Adar. Guess: a language and interface for graph exploration. In SIGCHI conference on Human Factors in computing systems, 2006

    Google Scholar 

  2. J. Altmann. Observational study of behaviour: sampling methods. Behaviour, 49:227–267, 1974

    Article  Google Scholar 

  3. F. Aureli, C. Schaffner, C. Boesch, and et al. Fission-fusion dynamics: new research frameworks. Current Anthropology, 48:627–654, 2008

    Article  Google Scholar 

  4. R. Baird and L. Dill. Ecological and social determinants of group size in transient killer whales. Behavioural Ecology, 7:408–416, 1996

    Article  Google Scholar 

  5. R. Baird and H. Whitehead. Social organization of mammal-eating killer whales: group stability and dispersal patterns. Canadian Journal of Zoology, 78:2096–2015, 2000

    Article  Google Scholar 

  6. V. Batageli. Notes on blockmodeling. Social Networks, 19:143–155, 1997

    Article  Google Scholar 

  7. M. Bigg, P. Olesiuk, G. Ellis, and J. Ford. Social organization and genealogy of killer whales (orcinus orca) in the coastal waters of british columbia and washington state. Reports to the International Whaling Commission, Special Issue, 12:383–405, 1990

    Google Scholar 

  8. M. Boguna and R. Pastor-Satorras. Epidemic spreading in correlated complex networks. Physical Review, E 66 4, 2002

    Google Scholar 

  9. Borgatti, Carley, and Krackhardt. Robustness of centrality measures under conditions of imperfect data. Social Networks, 28:124–136, 2006

    Google Scholar 

  10. D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Community mining from multi-relational networks. In Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, 2005

    Google Scholar 

  11. R. Connor, R. Wells, J. Mann, and A. Read. The bottlenose dolphin, Tursiops sp.: social relationships in a fission-fusion society. In J. Mann, R. Connor, P. Tyack, and H. Whitehead (Eds.), Cetacean Societies: field studies of dolphins and whales, pages 91–126, 2000. The University of Chicago Press, Chicago

    Google Scholar 

  12. P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 57–66, 2001

    Google Scholar 

  13. R.W.E.C.G. Owen and S. Hofmann. Ranging and association patterns of paired and unpaired adult male atlantic bottlenose dolphins. Canadian Journal of Zoology, 80:2072–2089, 2002

    Article  Google Scholar 

  14. D. Franks, R. James, J. Noble, and G. Ruxton. A foundation for developing methodology for social network sampling. Behavioral Ecology and Sociobiology, 63:1079–1088, 2009

    Article  Google Scholar 

  15. Frantz and Carley. Relating network topology to the robustness of centrality measures. Technical Report CASOS Technical Report CMU-ISRI-05-117, Carnegie Mellon University, 2005

    Google Scholar 

  16. L. Friedland and D. Jensen. Finding tribes: identifying close-knit individuals from employment patterns. In KDD, 2007

    Google Scholar 

  17. S. Gero, L. Bejder, H. Whitehead, J. Mann, and R. Connor. Behaviorally specific preferred associations in bottlenose dolphins, Tursiops sp. Canadian Journal of Zoology, 83:1566–1573, 2005

    Article  Google Scholar 

  18. Q. Gibson and J. Mann. The size, composition, and function of wild bottlenose dolphin (Tursiops sp.) mother-calf groups in shark bay, australia. Animal Behaviour, 76:389–405, 2008

    Article  Google Scholar 

  19. Q. Gibson and J. Mann. Early social development in wild bottlenose dolphins: sex differences, individual variation, and maternal influence. Animal Behaviour, 76:375–387, 2008

    Article  Google Scholar 

  20. M. Girvan and M.E.J. Newman. Community structure in social and biological networks. PNAS, 99(12):7821–7826, 2002

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Goodman. Snowball sampling. Annals of Mathematical Statistics, 32:148–170, 1961

    Article  MathSciNet  MATH  Google Scholar 

  22. Habiba, T.Y. Berger-Wolf, Y. Yu, and J. Saia. Finding spread blockers in dynamic networks. In SNA-KDD, 2008

    Google Scholar 

  23. J. Heer, S.K. Card, and J.A. Landay. prefuse: a toolkit for interactive information visualization. In SIGCHI conference on Human factors in computing systems, pages 421–430, 2005. ACM Press, NY

    Google Scholar 

  24. R. James, D. Croft, and J. Krause. Potential banana skins in animal social network analysis. Behavioral Ecology and Sociobiology, 63:989–997, 2009

    Article  Google Scholar 

  25. H. Kang, L. Getoor, and L. Singh. Visual analysis of dynamic group membership in temporal social networks. SIGKDD Explorations Newsletter, 9(2):13–21, 2007

    Article  Google Scholar 

  26. D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137–146, 2003

    Google Scholar 

  27. D. Lusseau, B. Wilson, P. Hammond, K. Grellier, J. Durban, K. Parsons, and et al. Quantifying the influence of sociality on population structure in bottlenose dolphins. Journal of Animal Ecology, 75:14–24, 2006

    Article  Google Scholar 

  28. J. Mann. Behavioral sampling methods for cetaceans: a review and critique. Marine Mammal Science, 15:102–122, 1999

    Article  Google Scholar 

  29. J. Mann, R.C. Connor, L.M. Barre, and M.R. Heithaus. Female reproductive success in bottlenose dolphins (Tursiops sp.): life history, habitat, provisioning, and group size effects. Behavioral Ecology, 11:210–219, 2000

    Article  Google Scholar 

  30. J. Moody and D.R. White. Structural cohesion and embeddedness: a hierarchical concept of social groups. American Sociological Review, 68(1):103–127, 2003

    Article  Google Scholar 

  31. M. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 2003

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Newman. Detecting community structure in networks. The European Physical Journal B, 38:321–330, 2004

    Article  Google Scholar 

  33. J. O’Madadhain, D. Fisher, S. White, and Y. Boey. The JUNG (Java Universal Network/Graph) Framework, Technical Report UCI-ICS, 03–17

    Google Scholar 

  34. E. Quintana-Rizzo and R. Wells. Resighting and association patterns of bottlenose dolphins (tursiops truncatus) in the cedar keys, florida: insights into social organization. Canadian Journal of Zoology, 79:447–456, 2001

    Article  Google Scholar 

  35. M. Salganik and D. Heckathorn. Sampling and estimation in hidden populations using respondent-driven sampling. Sociological Methodology, 34:193–239, 2004

    Article  Google Scholar 

  36. L. Singh, M. Beard, L. Getoor, and M.B. Blake. Visual mining of multi-modal social networks at different abstraction levels. In Proceedings of the 11th International Conference Information Visualization, pages 672–679, 2007

    Google Scholar 

  37. L. Singh, G. Nelson, J. Mann, A.K. Coakes, E. Krzyszczyk, and E. Herman. Data cleansing and transformation of observational scientific data. In In the ACM SIGMOD Workshop on Information Quality in Information Systems(IQIS), 2006

    Google Scholar 

  38. R. Smolker, A. Richards, R. Connors, and J. Pepper. Sex differences in patterns of association among indian ocean bottlenose dolphins. Behaviour, 123:38–69, 1992

    Article  Google Scholar 

  39. M. Stanton, J. Mann, Q. Gibson, B. Sargeant, L. Bejder, and L. Singh. How much does method matter? a comparison of social networks of bottlenose dolphins (Tursiops sp.) in shark bay, australia. In 18th Biennial Conference on the Biology of Marine Mammals, 2009

    Google Scholar 

  40. C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for community identification in dynamic social networks. In KDD, 2007

    Google Scholar 

  41. M. Trinkel and G. Kastberger. Competitive interactions between spotted hyenas and lions in the etosha national. African Journal of Ecology, 43:220–224, 2005

    Article  Google Scholar 

  42. A. Wasserman and K. Faust. Social network analysis: methods and applications. Cambridge University Press, Cambridge, 1994

    Book  MATH  Google Scholar 

  43. S. Wassermann and P. Pattison. Logit models and logistic regressions for social networks: I. An introduction to markov graphs and p*. Psychometrika, 61:401–425, 1996

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was funded by the Office of Naval Research under grant number #10230702 and the National Science Foundation under grant numbers #0941487 and #0918308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Singh, L., Bienenstock, E.J., Mann, J. (2010). Perspectives on Social Network Analysis for Observational Scientific Data. In: Furht, B. (eds) Handbook of Social Network Technologies and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7142-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7142-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7141-8

  • Online ISBN: 978-1-4419-7142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics