Skip to main content

Statistical Properties of Social Networks

  • Chapter
  • First Online:
Social Network Data Analytics

Abstract

In this chapter we describe patterns that occur in the structure of social networks, represented as graphs. We describe two main classes of properties, static properties, or properties describing the structure of snapshots of graphs; and dynamic properties, properties describing how the structure evolves over time. These properties may be for unweighted or weighted graphs, where weights may represent multi-edges (e.g. multiple phone calls from one person to another), or edge weights (e.g. monetary amounts between a donor and a recipient in a political donation network).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Akoglu, M. McGlohon, and C. Faloutsos. RTM: Laws and a recursive generator for weighted time-evolving graphs. Carnegie Mellon University Technical Report, Oct, 2008.

    Google Scholar 

  2. Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. Diameter of the world wide web. Nature, (401):130–131, 1999.

    Article  Google Scholar 

  3. A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, October 1999.

    Article  MathSciNet  Google Scholar 

  4. Albert-Laszlo Barabasi. Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life. Plume Books, April 2003.

    Google Scholar 

  5. Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 95–104, New York, NY, USA, 2007. ACM.

    Google Scholar 

  6. Zhiqiang Bi, Christos Faloutsos, and Filip Korn. The DGX distribution for mining massive, skewed data. In KDD, pages 17–26, ACMA, 2001. ACM.

    Google Scholar 

  7. Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis Tsaparas. Link analysis ranking: algorithms, theory, and experiments. ACM Trans. Inter. Tech., 5(1):231–297, 2005.

    Article  Google Scholar 

  8. Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model for graph mining. SIAM Int. Conf. on Data Mining, April 2004.

    Google Scholar 

  9. Soumen Chakrabarti, Byron E. Dom, S. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Andrew Tomkins, David Gibson, and Jon Kleinberg. Mining the web’s link structure. Computer, 32(8):60–67, 1999.

    Article  Google Scholar 

  10. Aaron Clauset, Cosma R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51(4):661+, Feb 2009.

    Article  MathSciNet  MATH  Google Scholar 

  11. Pedro Domingos and Matt Richardson. Mining the network value of customers. KDD, pages 57–66, 2001.

    Google Scholar 

  12. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On powerlaw relationships of the internet topology. SIGCOMM, pages 251–262, Aug-Sept. 1999.

    Google Scholar 

  13. Gary Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Selforganization and identification of web communities. IEEE Computer, 35(3), March 2002.

    Google Scholar 

  14. Michelle Girvan and M. E. J. Newman. Community structure in social and biological networks. PNAS, 99:7821, 2002.

    Article  Google Scholar 

  15. Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S. Tomkins. The Web as a graph: Measurements, models and methods. Lecture Notes in Computer Science, 1627:1–17, 1999.

    Google Scholar 

  16. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Core algorithms in the clever system. ACM Trans. Inter. Tech., 6(2):131–152, 2006.

    Article  MATH  Google Scholar 

  17. Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivastava. A comparative study of anomaly detection schemes in network intrusion detection. In Proceedings of the Third SIAM International Conference on Data Mining, 2003.

    Google Scholar 

  18. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In Proc. of ACM SIGKDD, pages 177–187, Chicago, Illinois, USA, 2005. ACM Press.

    Google Scholar 

  19. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In KDD ’05: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 177–187, New York, NY, USA, 2005. ACM Press.

    Google Scholar 

  20. Jure Leskovec, Kevin Lang, Anirban Dasgupta, and Michael Mahoney. Community structure in real graphs: The “negative dimensionality" paradox. In International World Wide Web Conference, 2008.

    Google Scholar 

  21. Jure Leskovec, Mary Mcglohon, Christos Faloutsos, Natalie Glance, and Matthew Hurst. Cascading behavior in large blog graphs: Patterns and a model. In Society of Applied and Industrial Mathematics: Data Mining (SDM07), 2007.

    Google Scholar 

  22. Mary Mcglohon, Leman Akoglu, and Christos Faloutsos. Weighted graphs and disconnected components: Patterns and a generator. In ACM Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), August 2008.

    Google Scholar 

  23. M. Mihail and C. Papadimitriou. The eigenvalue power law, 2002.

    Google Scholar 

  24. S. Milgram. The small-world problem. Psychology Today, 2:60–67, 1967.

    Google Scholar 

  25. Alan L. Montgomery and Christos Faloutsos. Identifying web browsing trends and patterns. IEEE Computer, 34(7):94–95, July 2001.

    Google Scholar 

  26. M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics, 46, 2005.

    Google Scholar 

  27. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review E, 69:026113, 2004.

    Google Scholar 

  28. C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: A fast and scalable tool for data mining in massive graphs. In SIGKDD, Edmonton, AB, Canada, 2002.

    Google Scholar 

  29. Shashank Pandit, Duen H. Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast and scalable system for fraud detection in online auction networks. InWWW’07: Proceedings of the 16th international conference on World Wide Web, pages 201–210, New York, NY, USA, 2007.

    Google Scholar 

  30. M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing, 2002.

    Google Scholar 

  31. Manfred Schroeder. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H. Freeman and Company, New York, 1991.

    Google Scholar 

  32. Michael F. Schwartz and David C. M. Wood. Discovering shared interests among people using graph analysis of global electronic mail traffic. Communications of the ACM, 36:78–89, 1992.

    Google Scholar 

  33. G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos. Power laws and the AS-level internet topology, 2003.

    Google Scholar 

  34. G. Siganos, S. L. Tauro, and M. Faloutsos. Jellyfish: a conceptual model for the as internet topology. Journal of Communications and Networks, 2006.

    Google Scholar 

  35. SL Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A simple conceptual model for the Internet topology. 2001.

    Google Scholar 

  36. Charalampos E. Tsourakakis. Fast counting of triangles in large real networks without counting: Algorithms and laws. In ICDM, 2008.

    Google Scholar 

  37. Mengzhi Wang, Tara Madhyastha, Ngai Hang Chang, Spiros Papadimitriou, and Christos Faloutsos. Data mining meets performance evaluation: Fast algorithms for modeling bursty traffic. ICDE, February 2002.

    Google Scholar 

  38. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘smallworld’ networks. Nature, (393):440–442, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary McGlohon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McGlohon, M., Akoglu, L., Faloutsos, C. (2011). Statistical Properties of Social Networks. In: Aggarwal, C. (eds) Social Network Data Analytics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8462-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8462-3_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8461-6

  • Online ISBN: 978-1-4419-8462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics