Skip to main content

Random Walks in Social Networks and their Applications: A Survey

  • Chapter
  • First Online:

Abstract

A wide variety of interesting real world applications, e.g. friend suggestion in social networks, keyword search in databases, web-spam detection etc. can be framed as ranking entities in a graph. In order to obtain ranking we need a graph-theoretic measure of similarity. Ideally this should capture the information hidden in the graph structure. For example, two entities are similar, if there are lots of short paths between them. Random walks have proven to be a simple, yet powerful mathematical tool for extracting information from the ensemble of paths between entities in a graph. Since real world graphs are enormous and complex, ranking using random walks is still an active area of research. The research in this area spans from new applications to novel algorithms and mathematical analysis, bringing together ideas from different branches of statistics, mathematics and computer science. In this book chapter, we describe different random walk based proximity measures, their applications, and existing algorithms for computing them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Social Networks, 25, 2003.

    Google Scholar 

  2. Alekh Agarwal and Soumen Chakrabarti. Learning random walks to rank nodes in graphs. In ICML ’07: Proceedings of the 24th international conference on Machine learning, 2007.

    Google Scholar 

  3. Alekh Agarwal, Soumen Chakrabarti, and Sunny Aggarwal. Learning to rank networked entities. In KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006.

    Google Scholar 

  4. David Aldous and James Allen Fill. Reversible Markov Chains. 2001.

    Google Scholar 

  5. Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In FOCS, 2006. ISBN 0-7695-2720-5.

    Google Scholar 

  6. Reid Andersen, Fan Chung, and Kevin Lang. Local Partitioning for Directed Graphs Using PageRank. Algorithms and Models for the Web-Graph, 2006.

    Google Scholar 

  7. Arik Azran. The rendezvous algorithm: multiclass semi-supervised learning with markov random walks. In ICML ’07: Proceedings of the 24th international conference on Machine learning, 2007.

    Google Scholar 

  8. Arik Azran and Zoubin Ghahramani. A new approach to data driven clustering. In ICML ’06: Proceedings of the 23rd international conference on Machine learning, 2006.

    Google Scholar 

  9. A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank: Authority-based keyword search in databases. In VLDB, 2004.

    Google Scholar 

  10. P. Berkhin. Bookmark-Coloring Algorithm for Personalized PageRank Computing. Internet Mathematics, 2006.

    Google Scholar 

  11. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7), 1970.

    Google Scholar 

  12. D. Boley, G. Ranjan, and Z. Zhang. Commute times for a directed graph using an asymmetric Laplacian. Technical report:10-005, University of Minnesota, 2010.

    Google Scholar 

  13. Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis Tsaparas. Finding authorities and hubs from link structures on the world wide web. InWWW’01: Proceedings of the 10th international conference on World Wide Web, pages 415–429, New York, NY, USA, 2001. ACM. ISBN 1-58113-348-0.

    Google Scholar 

  14. M. Brand. A RandomWalks Perspective onMaximizing Satisfaction and Profit. In SIAM ’05, 2005.

    Google Scholar 

  15. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proc. WWW, 1998.

    Google Scholar 

  16. Andrei Z. Broder. On the resemblance and containment of documents. In In Compression and Complexity of Sequences (SEQUENCES’97), pages 21–29. IEEE Computer Society, 1997.

    Google Scholar 

  17. Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise independent permutations (extended abstract). In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of computing, 1998.

    Google Scholar 

  18. Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In Proc. WWW, New York, NY, USA, 2007.

    Google Scholar 

  19. Soumen Chakrabarti, Jeetendra Mirchandani, and Arnab Nandi. Spin: searching personal information networks. In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, 2005.

    Google Scholar 

  20. A. K. Chandra, P. Ragha,W. L.van Ruzzo, and R. Smolensky. The electrical resistance of a graph captures its commute and cover times. In STOC, pages 574–586, 1989.

    Google Scholar 

  21. Fan Chung. Laplacians and the cheeger inequality for directed graphs. Annals of Combinatorics, 2005.

    Google Scholar 

  22. K. Collins-Thompson and J. Callan. Query expansion using random walk models. In CIKM ’05: Proceedings of the 14th ACM international conference on Information and knowledge management, 2005.

    Google Scholar 

  23. Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. J. Algorithms, 55(1): 58–75, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  24. Bhavana Bharat Dalvi, Meghana Kshirsagar, and S. Sudarshan. Keyword search on external memory data graphs. Proc. VLDB Endow., 1(1):1189–1204, 2008.

    Google Scholar 

  25. P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. The Mathematical Assoc. of America., 1984.

    Google Scholar 

  26. Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast discovery of connection subgraphs. In KDD ’04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004.

    Google Scholar 

  27. D. Fogaras and B. Racz. Scaling link-based similarity search. In Proceedings of the 14th Int’l World Wide Web Conference, 2005.

    Google Scholar 

  28. D. Fogaras, B. Rcz, K. Csalogány, and Tamás Sarlós. Towards scaling fully personalized pagerank: Algorithms, lower bounds, and experiments. Internet Mathematics, 2004.

    Google Scholar 

  29. Francois Fouss, Alain Pirotte, Jean michel Renders, and Marco Saerens. A novel way of computing dissimilarities between nodes of a graph, with application to collaborative filtering. In ECML workshop on Statistical Approaches for Web Mining, 2004.

    Google Scholar 

  30. David Gibson, Jon Kleinberg, and Prabhakar Raghavan. Clustering categorical data: an approach based on dynamical systems. The VLDB Journal, 8(3-4), 2000.

    Google Scholar 

  31. L. Gorelick, M. Galun, E. Sharon, R. Basri, and A. Brandt. Shape representation and classification using the poisson equation. In CVPR, 2004.

    Google Scholar 

  32. J.C. Gower. A general coefficient of similarity and some of its properties. Biometrics, 27:857–871, 1971.

    Article  Google Scholar 

  33. Leo Grady. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1768–1783, 2006. ISSN 0162-8828.

    Article  Google Scholar 

  34. Leo Grady and Eric L. Schwartz. Isoperimetric graph partitioning for data clustering and image segmentation. In IEEE PAMI, 2006.

    Google Scholar 

  35. Zoltan Gyongyi, Hector Garcia-Molina, and Jan Pedersen. Combating web spam with trustrank. In VLDB’2004: Proceedings of the Thirtieth international conference on Very large data bases. VLDB Endowment, 2004.

    Google Scholar 

  36. David Harel and Yehuda Koren. On clustering using random walks. In Foundations of Software Technology and Theoretical Computer Science 2245. Springer-Verlag, 2001.

    Google Scholar 

  37. T. Haveliwala. Topic-sensitive pagerank. In Proceedings of the Eleventh International World Wide Web Conference, 2002.

    Google Scholar 

  38. Jun Hirai, Sriram Raghavan, Hector Garcia-molina, and Andreas Paepcke. Webbase : A repository of web pages. In In Proceedings of the Ninth International World Wide Web Conference, 2000.

    Google Scholar 

  39. John Hopcroft and Daniel Sheldon. Manipulation-resistant reputations using hitting time. Technical report, Cornell University, 2007.

    Google Scholar 

  40. G. Jeh and J. Widom. Scaling personalized web search. In Stanford University Technical Report, 2002.

    Google Scholar 

  41. Glen Jeh and Jennifer Widom. Simrank: A measure if structural-context similarity. In ACM SIGKDD, 2002.

    Google Scholar 

  42. Thorsten Joachims. Optimizing search engines using clickthrough data. In KDD ’02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 2002.

    Google Scholar 

  43. W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space. Contemporary Mathematics, 26:189–206, 1984.

    MathSciNet  MATH  Google Scholar 

  44. Amruta Joshi, Ravi Kumar, Benjamin Reed, and Andrew Tomkins. Anchor-based proximity measures. In WWW ’07: Proceedings of the 16th international conference on World Wide Web, 2007.

    Google Scholar 

  45. Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D.Manning, and Gene H. Golub. Extrapolation methods for accelerating pagerank computations. In WWW ’03: Proceedings of the 12th international conference on World Wide Web, 2003.

    Google Scholar 

  46. L. Katz. A new status index derived from sociometric analysis. In Psychometrika, 1953.

    Google Scholar 

  47. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5), 1999.

    Google Scholar 

  48. Yehuda Koren, Stephen C. North, and Chris Volinsky. Measuring and extracting proximity in networks. In KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006.

    Google Scholar 

  49. John Lafferty and Chengxiang Zhai. Document language models, query models, and risk minimization for information retrieval. In SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, 2001.

    Google Scholar 

  50. Amy N. Langville and Carl D. Meyer. Deeper inside pagerank. 2003.

    Google Scholar 

  51. R. Lempel and S. Moran. Salsa: the stochastic approach for link-structure analysis. ACM Trans. Inf. Syst., 19(2), 2001.

    Google Scholar 

  52. Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using optimization. ACM Transactions on Graphics, 23:689–694, 2004.

    Article  Google Scholar 

  53. David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In CIKM ’03, 2003.

    Google Scholar 

  54. Laszlo Lovasz. Random walks on graphs: a survey. 1996.

    Google Scholar 

  55. Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query suggestion using hitting time. In CIKM ’08, pages 469–478, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-991-3.

    Google Scholar 

  56. Marina Meila and Jianbo Shi. A random walks view of spectral segmentation. In AISTATS, 2001.

    Google Scholar 

  57. Einat Minkov, William W. Cohen, and Andrew Y. Ng. Contextual search and name disambiguation in email using graphs. In SIGIR ’06, 2006.

    Google Scholar 

  58. Marc Najork and Nick Craswell. Efficient and effective link analysis with precomputed SALSA maps. In CIKM ’08: Proceeding of the 17th ACM conference on Information and knowledge management, 2008.

    Google Scholar 

  59. Marc Najork, Sreenivas Gollapudi, and Rina Panigrahy. Less is more: sampling the neighborhood graph makes SALSA better and faster. In WSDM ’09: Proceedings of the Second ACM International Conference on Web Search and Data Mining, 2009.

    Google Scholar 

  60. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems, 2001.

    Google Scholar 

  61. Alexandros Ntoulas, Marc Najork, Mark Manasse, and Dennis Fetterly. Detecting spam web pages through content analysis. In WWW ’06: Proceedings of the 15th international conference on World Wide Web, 2006.

    Google Scholar 

  62. Huaijun Qiu and Edwin R. Hancock. Image segmentation using commute times. In Proc. BMVC, 2005.

    Google Scholar 

  63. Huaijun Qiu and Edwin R. Hancock. Robust multi-body motion tracking using commute time clustering. In ECCV’06, 2006.

    Google Scholar 

  64. M. Saerens, F. Fouss, L. Yen, and P. Dupont. The principal component analysis of a graph and its relationships to spectral clustering, 2004.

    Google Scholar 

  65. Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986. ISBN 0070544840.

    Google Scholar 

  66. Purnamrita Sarkar and Andrew Moore. A tractable approach to finding closest truncated-commute-time neighbors in large graphs. In Proc. UAI, 2007.

    Google Scholar 

  67. Purnamrita Sarkar and Andrew Moore. Fast nearest-neighbor search in disk-resident graphs. Technical report, Machine Learning Department, Carnegie Mellon University, 2010.

    Google Scholar 

  68. Purnamrita Sarkar and Andrew W. Moore. Fast dynamic reranking in large graphs. In International World Wide Web Conference, 2009.

    Google Scholar 

  69. Purnamrita Sarkar, AndrewW.Moore, and Amit Prakash. Fast incremental proximity search in large graphs. In Proceedings of the 25th International Conference on Machine Learning, 2008.

    Google Scholar 

  70. Tamas Sarlos, Andras A. Benczur, Karoly Csalogany, Daniel Fogaras, and Balazs Racz. To randomize or not to randomize: space optimal summaries for hyperlink analysis. In WWW, 2006.

    Google Scholar 

  71. Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph streams. In PODS, 2008.

    Google Scholar 

  72. Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. In CVPR ’97: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), 1997.

    Google Scholar 

  73. A. Smola and R. Kondor. Kernels and regularization on graphs. In Springer Verlag, editor, Learning Theory and Kernel Machines, 2003.

    Google Scholar 

  74. D. Spielman and N. Srivastava. Graph sparsification by effective resistances. In Proceedings of the STOC’08, 2008.

    Google Scholar 

  75. D. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the STOC’04, 2004.

    Google Scholar 

  76. Martin Szummer and Tommi Jaakkola. Partially labeled classification with markov random walks. In Advances in Neural Information Processing Systems, volume 14, 2001.

    Google Scholar 

  77. John A. Tomlin. A new paradigm for ranking pages on the world wide web. In WWW ’03: Proceedings of the 12th international conference on World Wide Web, 2003.

    Google Scholar 

  78. Hanghang Tong, Yehuda Koren, and Christos Faloutsos. Fast directionaware proximity for graph mining. In ACM SIGKDD, Proceeding of the Internation Conference on Knowledge Discovery and DataMining, 2007.

    Google Scholar 

  79. Kristina Toutanova, Christopher D. Manning, and Andrew Y. Ng. Learning random walk models for inducing word dependency distributions. In ICML ’04: Proceedings of the twenty-first international conference on Machine learning, 2004.

    Google Scholar 

  80. Panayiotis Tsaparas. Using non-linear dynamical systems for web searching and ranking. In PODS ’04: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2004.

    Google Scholar 

  81. Ah Chung Tsoi, Gianni Morini, Franco Scarselli, Markus Hagenbuchner, and Marco Maggini. Adaptive ranking of web pages. In WWW ’03: Proceedings of the 12th international conference on World Wide Web, 2003.

    Google Scholar 

  82. Baoning Wu and Kumar Chellapilla. Extracting link spam using biased random walks from spam seed sets. In WWW, 2007.

    Google Scholar 

  83. L. Yen, L. Vanvyve, D. Wouters, F. Fouss, F. Verleysen, and M. Saerens. Clustering using a random-walk based distance measure. In ESANN 2005, pages 317–324, 2005.

    Google Scholar 

  84. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, volume 20, 2003.

    Google Scholar 

  85. Xiaojin Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2005. Chair-Lafferty, John and Chair-Rosenfeld, Ronald.

    Google Scholar 

  86. Xiaojin Zhu. Semi-supervised learning literature survey, 2006.

    Google Scholar 

  87. Xiaojin Zhu and John Lafferty. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semisupervised learning. In ICML ’05: Proceedings of the 22nd international conference on Machine learning, 2005.

    Google Scholar 

  88. C. Rao and S.Mitra. Generalized inverse of matrices and its applications. John Wiley and Sons, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnamrita Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sarkar, P., Moore, A.W. (2011). Random Walks in Social Networks and their Applications: A Survey. In: Aggarwal, C. (eds) Social Network Data Analytics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8462-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8462-3_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8461-6

  • Online ISBN: 978-1-4419-8462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics