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Abstract

In Euclidean spaces, the geometric notions of nearest-points map, farthest-points map,
Chebyshev set, Klee set, and Chebyshev center are well known and well understood. Since
early works going back to the 1930s, tremendous theoretical progress has been made, mostly
by extending classical results from Euclidean space to Banach space settings. In all these re-
sults, the distance between points is induced by some underlying norm. Recently, these no-
tions have been revisited from a different viewpoint in which the discrepancy between points
is measured by Bregman distances induced by Legendre functions. The associated framework
covers the well known Kullback-Leibler divergence and the Itakura-Saito distance. In this sur-
vey, we review known results and we present new results on Klee sets and Chebyshev centers
with respect to Bregman distances. Examples are provided and connections to recent work on
Chebyshev functions are made. We also identify several intriguing open problems.
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1 Introduction

Legendre Functions and Bregman Distances

Throughout, we assume that

(1) X = R
n is the standard Euclidean space with inner product 〈·, ·〉,

with induced norm ‖ · ‖ : x 7→
√

〈x, x〉, and with metric (x, y) 7→ ‖x − y‖. In addition, it is
assumed that

(2) f : X → [−∞,+∞] is a convex function of Legendre type,

also referred as a Legendre function. We assume the reader is familiar with basic results and
standard notation from Convex Analysis; see, e.g., [32, 33, 39]. In particular, f ∗ denotes the
Fenchel conjugate of f , and int dom f is the interior of the domain of f . For a subset C of X, C
stands for the closure of C, conv C for the convex hull of C, and ιC for the indicator function of
C, i.e., ιC(x) = 0, if x ∈ C and ιC(x) = +∞, if x ∈ X r C. Now set

(3) U = int dom f .

Example 1.1 (Legendre functions) The following are Legendre functions 1, each evaluated at
a point x ∈ X.

(i) halved energy: f (x) = 1
2‖x‖2 = 1

2 ∑j x2
j .

(ii) negative entropy: f (x) =

{

∑j

(

xj ln(xj)− xj

)

, if x ≥ 0;

+∞, otherwise.

(iii) negative logarithm: f (x) =

{

−∑j ln(xj), if x > 0;

+∞, otherwise.

Note that U = R
n in (i), whereas U = R

n
++ in (ii) and (iii).

Further examples of Legendre functions can be found in, e.g., [2, 4, 12, 32].

Fact 1.2 (Rockafellar) (See [32, Theorem 26.5].) The gradient map ∇ f is a continuous bijection
between int dom f and int dom f ∗, with continuous inverse map (∇ f )−1 = ∇ f ∗. Furthermore, f ∗

is also a convex function of Legendre type.

Given x ∈ U and C ⊆ U, it will be convenient to write

1Here and elsewhere, inequalities between vectors in R
n are interpreted coordinate-wise.
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x∗ = ∇ f (x),(4)

C∗ = ∇ f (C),(5)

U∗ = int dom f ∗,(6)

and similarly for other vectors and sets in U. Note that we used Fact 1.2 for (6).
While the Bregman distance defined next is not a distance in the sense of metric topology,

it does possess some good properties that allow it to measure the discrepancy between points
in U.

Definition 1.3 (Bregman distance) (See [13, 15, 16].) The Bregman distance with respect to f ,
written D f or simply D, is the function

(7) D : X × X → [0,+∞] : (x, y) 7→
{

f (x)− f (y)− 〈∇ f (y), x− y〉 , if y ∈ U;

+∞, otherwise.

Fact 1.4 (See [2, Proposition 3.2.(i) and Theorem 3.7.(iv)&(v)].) Let x and y be in U. Then the
following hold.

(i) D f (x, y) = f (x) + f ∗(y∗)− 〈y∗, x〉 = D f ∗(y
∗, x∗).

(ii) D f (x, y) = 0⇔ x = y⇔ x∗ = y∗ ⇔ D f ∗(x∗, y∗) = 0.

Example 1.5 The Bregman distances corresponding to the Legendre functions of Example 1.1
between two points x and y in X are as follows.

(i) D(x, y) = 1
2‖x− y‖2.

(ii) D(x, y) =

{

∑j

(

xj ln(xj/yj)− xj + yj

)

, if x ≥ 0 and y > 0;

+∞, otherwise.

(iii) D(x, y) =

{

∑j

(

ln(yj/xj) + xj/yj − 1
)

, if x > 0 and y > 0;

+∞, otherwise.

These Bregman distances are also known as (i) the halved Euclidean distance squared, (ii) the
Kullback-Leibler divergence, and (iii) the Itakura-Saito distance, respectively.

From now on, we assume that C is a subset of X such that

(8) C is closed and ∅ 6= C ⊆ U.

The power set (the set of all subsets) of C is denoted by 2C.
We are now in a position to introduce the various geometric notions.

3



Nearest Distance, Nearest Points, and Chebyshev Sets

Definition 1.6 (Bregman nearest-distance function and nearest-points map)
The left Bregman nearest-distance function with respect to C is

(9)
←−
DC : X → [0,+∞] : y 7→ inf

x∈C
D(x, y),

and the left Bregman nearest-points map with respect to C is

(10)
←−
PC : X → 2C : y 7→

{

x ∈ C
∣

∣ D(x, y) =
←−
DC(y) < +∞

}

.

The right Bregman nearest-distance and the right Bregman nearest-point map with respect to C
are

(11)
−→
DC : X → [0,+∞] : x 7→ inf

y∈C
D(x, y)

and

(12)
−→
PC : X → 2C : x 7→

{

y ∈ C
∣

∣ D(x, y) =
−→
DC(x) < +∞

}

,

respectively. If we need to emphasize the underlying Legendre function f , then we write
←−
Df ,C,

←−
P f ,C,

−→
D f ,C, and

−→
P f ,C.

Definition 1.7 (Chebyshev sets) The set C is a left Chebyshev set with respect to the Bregman

distance, or simply
←−
D-Chebyshev, if for every y ∈ U,

←−
PC(y) is a singleton. Similarly, the set C is

a right Chebyshev set with respect to the Bregman distance, or simply
−→
D-Chebyshev, if for every

x ∈ U,
−→
PC(x) is a singleton.

Remark 1.8 (Classical Bunt-Motzkin result) Assume that f is the halved energy as in Exam-
ple 1.1(i). Since the halved Euclidean distance squared (see Example 1.5(i)) is symmetric, the
left and right (Bregman) nearest distances coincide, as do the corresponding nearest-point
maps. Furthermore, the set C is Chebyshev if and only if for every z ∈ X, the metric2 pro-
jection PC(z) is a singleton. It is well known that if C is convex, then C is Chebyshev. In
the mid-1930s, Bunt [14] and Motzkin [28] showed independently that the following converse
holds:

(13) C is Chebyshev =⇒ C is convex.

For other works in this direction, see, e.g., [1, 9, 10, 11, 17, 25, 24, 22, 34, 35, 36]. It is still
unknown whether or not (13) holds in general Hilbert spaces. We review corresponding results
for the present Bregman setting in Section 3 below.

Farthest Distance, Farthest Points, and Klee Sets

Definition 1.9 (Bregman farthest-distance function and farthest-points map)
The left Bregman farthest-distance function with respect to C is

(14)
←−
FC : X → [0,+∞] : y 7→ sup

x∈C

D(x, y),

2The metric projection is the nearest-points map with respect to the Euclidean distance.
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and the left Bregman farthest-points map with respect to C is

(15)
←−
QC : X → 2C : y 7→

{

x ∈ C
∣

∣ D(x, y) =
←−
FC(y) < +∞

}

.

Similarly, the right Bregman farthest-distance function with respect to C is

(16)
−→
F C : X → [0,+∞] : x 7→ sup

y∈C

D(x, y),

and the right Bregman farthest-points map with respect to C is

(17)
−→
QC : X → 2C : x 7→

{

y ∈ C
∣

∣ D(x, y) =
−→
F C(x) < +∞

}

.

If we need to emphasize the underlying Legendre function f , then we write
←−
F f ,C,

←−
Qf ,C,

−→
F f ,C, and

−→
Q f ,C.

Definition 1.10 (Klee sets) The set C is a left Klee set with respect to the Bregman distance, or

simply
←−
D-Klee, if for every y ∈ U,

←−
QC(y) is a singleton. Similarly, the set C is a right Klee set with

respect to the right Bregman distance, or simply
−→
D-Klee, if for every x ∈ U,

−→
QC(x) is a singleton.

Remark 1.11 (Classical Klee result) Assume again that f is the halved energy as in Exam-
ple 1.1(i). Then the left and right (Bregman) farthest-distance functions coincide, as do the
corresponding farthest-points maps. Furthermore, the set C is Klee if and only if for every
z ∈ X, the metric farthest-points map QC(z) is a singleton. It is obvious that if C is a singleton,
then C is Klee. In 1961, Klee [27] showed the following converse:

(18) C is Klee =⇒ C is a singleton.

See, e.g., also [1, 11, 17, 23, 24, 25, 29, 38]. Once again, it is still unknown whether or not (18)
remains true in general Hilbert spaces. The present Bregman-distance setting is reviewed in
Section 4 below.

Chebyshev Radius and Chebyshev Center

Definition 1.12 (Chebyshev radius and Chebyshev center)

The left
←−
D-Chebyshev radius of C is

(19) ←−r C = inf
y∈U

←−
FC(y)

and the left
←−
D-Chebyshev center of C is

(20)
←−
ZC =

{

y ∈ U
∣

∣

←−
FC(y) =

←−r C < +∞
}

.

Similarly, the right
−→
D-Chebyshev radius of C is

(21) −→r C = inf
x∈U

−→
F C(x)

and the right
−→
D-Chebyshev center of C is

(22)
−→
ZC =

{

x ∈ U
∣

∣

−→
F C(x) = −→r C < +∞

}

.

If we need to emphasize the underlying Legendre function f , then we write←−r f ,C,
←−
Z f ,C,−→r f ,C, and

−→
Z f ,C.
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Remark 1.13 (Classical Garkavi-Klee result) Again, assume that f is the halved energy as in
Example 1.1(i) so that the left and right (Bregman) farthest-distance functions coincide, as do
the corresponding farthest-points maps. Furthermore, assume that C is bounded. In the 1960s,
Garkavi [19] and Klee [26] proved that the Chebyshev center is a singleton, say {z}, which is
characterized by

(23) z ∈ conv QC(z).

See also [30, 31] and Section 5 below. In passing, we note that Chebyshev centers are also
utilized in Fixed Point Theory; see, e.g., [20, Chapter 4].

Goal of the Paper

The aim of this survey is three-fold. First, we review recent results concerning Chebyshev
sets, Klee sets, and Chebyshev centers with respect to Bregman distances. Secondly, we pro-
vide some new results and examples on Klee sets and Chebyshev centers. Thirdly, we formu-
late various tantalizing open problems on these notions as well as on the related concepts of
Chebyshev functions.

Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we record auxiliary results
which will make the derivation of the main results more structured. Chebyshev sets and cor-
responding open problems are discussed in Section 3. In Section 4, we review results and open
problems for Klee sets, and we also present a new result (Theorem 4.3) concerning left Klee
sets. Chebyshev centers are considered in Section 5, where we also provide a characterization
of left Chebyshev centers (Theorem 5.2). Chebyshev centers are illustrated by Examples in
Section 6. Recent related results on variations of Chebyshev sets and Klee sets are considered
in Section 7. Along our journey, we pose several questions that we list collectively in the final
Section 8.

2 Auxiliary Results

For the reader’s convenience, we present the following two results which are implicitly con-
tained in [7] and [8].

Lemma 2.1 Let x and y be in C. Then the following hold.

(i)
←−
Df ,C(y) =

−→
D f ∗,C∗(y

∗) and
−→
D f ,C(x) =

←−
Df ∗,C∗(x∗).

(ii)
←−
P f ,C

∣

∣

U
= ∇ f ∗ ◦ −→P f ∗,C∗ ◦ ∇ f and

−→
P f ,C

∣

∣

U
= ∇ f ∗ ◦←−P f ∗,C∗ ◦ ∇ f .

(iii)
←−
P f ∗,C∗

∣

∣

U∗ = ∇ f ◦ −→P f ,C ◦ ∇ f ∗ and
−→
P f ∗,C∗

∣

∣

U∗ = ∇ f ◦←−P f ,C ◦ ∇ f ∗.

Proof. This follows from Fact 1.2, Fact 1.4(i), and Definition 1.6. (See also [7, Proposition 7.1].)
�

Lemma 2.2 Let x and y be in C. Then the following hold.

(i)
←−
F f ,C(y) =

−→
F f ∗,C∗(y

∗) and
−→
F f ,C(x) =

←−
F f ∗,C∗(x∗).
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(ii)
←−
Qf ,C

∣

∣

U
= ∇ f ∗ ◦ −→Q f ∗,C∗ ◦ ∇ f and

−→
Q f ,C

∣

∣

U
= ∇ f ∗ ◦←−Qf ∗,C∗ ◦ ∇ f .

(iii)
←−
Qf ∗,C∗

∣

∣

U∗ = ∇ f ◦ −→Q f ,C ◦ ∇ f ∗ and
−→
Q f ∗,C∗

∣

∣

U∗ = ∇ f ◦←−Qf ,C ◦ ∇ f ∗.

Proof. This follows from Fact 1.2, Fact 1.4(i), and Definition 1.9. (See also [8, Proposition 7.1].)
�

The next observation on the duality of Chebyshev radii and Chebyshev centers is new.

Lemma 2.3 The following hold.

(i) ←−r f ,C = −→r f ∗,C∗ and −→r f ,C =←−r f ∗,C∗ .

(ii)
←−
Z f ,C = ∇ f ∗

(−→
Z f ∗,C∗

)

and
−→
Z f ,C = ∇ f ∗

(←−
Z f ∗,C∗

)

.

(iii)
←−
Z f ∗,C∗ = ∇ f

(−→
Z f ,C

)

and
−→
Z f ∗,C∗ = ∇ f

(←−
Z f ,C

)

.

(iv)
←−
Z f ,C is a singleton⇔−→Z f ∗,C∗ is a singleton.

(v)
−→
Z f ,C is a singleton⇔←−Z f ∗,C∗ is a singleton.

Proof. (i): Using Definition 1.12 and Lemma 2.2(i), we see that

(24) ←−r f ,C = inf
y∈U

←−
FC(y) = inf

y∗∈U∗
−→
F C∗(y

∗) = −→r f ∗,C∗

and that

(25) −→r f ,C = inf
y∈U

−→
F C(y) = inf

y∗∈U∗
←−
FC∗(y

∗) =←−r f ∗,C∗ .

(ii)&(iii): Let z ∈ U. Using (i) and Lemma 2.2(i), we see that

(26) z ∈ ←−Z f ,C ⇔
←−
F f ,C(z) =

←−r f ,C ⇔
−→
F f ∗,C∗(z

∗) = −→r f ∗,C∗ ⇔ z∗ ∈ −→Z f ∗,C∗ .

This verifies
←−
Z f ,C = ∇ f ∗

(−→
Z f ∗,C∗

)

and
−→
Z f ∗,C∗ = ∇ f

(←−
Z f ,C

)

. The remaining identities follow
similarly.

(iv)&(v): Clear from (ii)&(iii) and Fact 1.2. �

The following two results play a key role for studying the single-valuedness of
−→
P f ,C via

←−
P f ∗,C∗ and

−→
Q f ,C via

←−
Qf ∗,C∗ by duality.

Lemma 2.4 Let V and W be nonempty open subsets of X, and let T : V → W be a homeomorphism,
i.e., T is a bijection and both T and T−1 are continuous. Furthermore, let G be a residual 3 subset of V.
Then T(G) is a residual subset of W.

Proof. As G is residual, there exists a sequence of dense open subsets (Ok)k∈N of V such that
G ⊇ ⋂

k∈N Ok. Then T(G) ⊇ T(
⋂

k∈N Ok) =
⋂

k∈N T(Ok). Since T : V → W is a homeomor-
phism and each Ok is dense in V, we see that each T(Ok) is open and dense in W. Therefore,
⋂

k∈N T(Ok) is a dense Gδ subset in W. �

3also known as “second category”
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Lemma 2.5 Let V be a nonempty open subset of X, and let T : V → R
n be locally Lipschitz. Further-

more, let S be a subset of V that has Lebesgue measure zero. Then T(S) has Lebesgue measure zero as
well.

Proof. Denote the closed unit ball in X by B. For every y ∈ V, let r(y) > 0 be such that T is
Lipschitz continuous with constant c(y) on the open ball O(y) centered at y of radius r(y). In
this proof we denote the Lebesgue measure by λ. Let K be a compact subset of X. To show that
T(S) has Lebesgue measure zero, it suffices to show that λ(T(K ∩ S)) = 0 because

(27) λ
(

T(S)
)

= λ

(

T
(

⋃

k∈N

S ∩ kB

)

)

≤ ∑
k∈N

λ
(

T(S ∩ kB)
)

.

The Heine-Borel theorem provides a finite subset {y1, . . . , ym} of V such that

(28) K ⊆
m
⋃

j=1

O(yj).

We now proceed using a technique implicit in the proof of [21, Corollary 1]. Set c =
max{c1, c2, . . . , cm}. Given ε > 0, there exists an open subset G of X such that G ⊇ K ∩ S
and λ(G) < ε. For each y ∈ K ∩ S, let Q(y) be an open cubic interval centered at y of semi-edge
length s(y) > 0 such that

(29) (∃ j ∈ {1, . . . , m}) Q(y) ⊆ G ∩O(yj).

Then for each x ∈ Q(y), we have

(30) ‖Tx− Ty‖ ≤ c‖x− y‖ ≤ c
√

ns(y).

Hence the image of Q(y) by T, T(Q(y)), is contained in a cubic interval — which we denote
by Q∗(Ty) — of center Ty and with semi-edge length c

√
ns(y). Applying the Besicovitch Cov-

ering Theorem, we see that there exists a sequence (Qk)k∈N chosen among the open covering
(Q(y))y∈K∩S such that

(31) K ∩ S ⊆
⋃

k∈N

Qk and ∑
k∈N

χQk
≤ θ,

where χQk
stands for the characteristic function of Qk and where the constant θ only depends

on the dimension of X. Thus,

(32) T(K ∩ S) ⊆ T
(

⋃

k∈N

Qk

)

=
⋃

k∈N

T(Qk) ⊆
⋃

k∈N

Q∗k .

Now set d = (c
√

n)n so that λ(Q∗k) ≤ dλ(Qk). Then, using (29) and (31), we see that

λ
(

∪k∈N Q∗k
)

≤ ∑
k∈N

λ(Q∗k) ≤ d ∑
k∈N

λ(Qk) = d ∑
k∈N

∫

χQk
= d

∫

∑
k∈N

χQk
≤ dθλ(G)

≤ dθε.(33)

Since ε was chosen arbitrarily, we conclude that λ(T(K ∩ S)) = 0.
Alternatively, one may argue as follows starting from (28). We have K∩ S ⊆

(

⋃m
j=1 O(yj)

)

∩
S =

⋃m
j=1 O(yj) ∩ S so that

(34) T(K ∩ S) ⊆
m
⋃

j=1

T(O(yj) ∩ S).

8



Since T is Lipschitz on each O(yj) with constant c(yj) and since λ(O(yj)∩ S) = 0, we apply [18,
Proposition 262D, page 286] and conclude that λ(T(O(yj)∩ S)) = 0. Therefore, λ(T(K ∩ S)) =
0 by (34). �

3 Chebyshev Sets

We start by reviewing the strongest known results concerning left and right Chebyshev sets
with respect to Bregman distances.

Fact 3.1 (
←−
D-Chebyshev sets) (See [7, Theorem 4.7].) Suppose that f is supercoercive4 and that C

is
←−
D-Chebyshev. Then C is convex.

Fact 3.2 (
−→
D-Chebyshev sets) (See [7, Theorem 7.3].) Suppose that dom f = X, that C∗ ⊆ U∗,

and that C is
−→
D-Chebyshev. Then C∗ is convex.

It is not known whether or not Fact 3.1 and Fact 3.2 are the best possible results. For in-
stance, is the assumption on supercoercivity in Fact 3.1 really necessarily? Similarly, do we
really require full domain of f in Fact 3.2?

Example 3.3 (See [7, Example 7.5].) Suppose that X = R
2, that f is the negative entropy (see

Example 1.1(ii)), and that

(35) C =
{

(eλ, e2λ)
∣

∣ λ ∈ [0, 1]
}

.

Then f is supercoercive and C is a nonconvex
−→
D-Chebyshev set.

Example 3.3 is somewhat curious — not only does it illustrate that the right-Chebyshev-set
counterpart of Fact 3.1 fails but it also shows that the conclusion of Fact 3.2 may hold even
though f is not assumed to have full domain.

Fact 3.4 (See [6, Lemma 3.5].) Suppose that f is the negative entropy (see Example 1.1(ii)) and that

C is convex. Then C is
−→
D-Chebyshev.

Fact 3.4 raises two intriguing questions. Apart from the case of quadratic functions, are

there instances of f where f has full domain and where every closed convex subset of U is
−→
D-

Chebyshev? Because of Fact 3.2, an affirmative answer to this question would imply that∇ f is
a (quite surprising) nonaffine yet convexity-preserving transformation. Combining Example 3.3
and Fact 3.4, we deduce that — when working with the negative entropy — if C is convex,

then C is
−→
D-Chebyshev but not vice versa. Is it possible to describe the

−→
D-Chebyshev sets in

this setting?

We also note that C is “nearly
←−
D-Chebyshev” in the following sense.

Fact 3.5 (See [7, Corollary 5.6].) Suppose that f is supercoercive, that f is twice continuously dif-

ferentiable, and that for every y ∈ U, ∇2 f (y) is positive definite. Then
←−
PC is almost everywhere and

generically5 single-valued on U.

4 By [2, Proposition 2.16], f is supercoercive :⇔ lim
‖x‖→+∞

f (x)

‖x‖ = +∞⇔ dom f ∗ = X.

5That is, the set S of points y ∈ U where
←−
PC(y) is not a singleton is very small both in measure theory (S has measure

0) and in category theory (S is meager/first category).
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It would be interesting to see whether or not supercoercivity is essential in Fact 3.5. By

duality, we obtain the following result on the single-valuedness of
−→
P f ,C.

Corollary 3.6 Suppose that f has full domain, that f ∗ is twice continuously differentiable, and that

∇2 f ∗(y) is positive definite for every y ∈ U∗. Then
−→
P f ,C is almost everywhere and generically single-

valued on U.

Proof. By Lemma 2.1(ii),
−→
P f ,C

∣

∣

U
= ∇ f ∗ ◦ ←−P f ∗,C∗ ◦ ∇ f . Fact 3.5 states that

←−
P f ∗,C∗ is almost

everywhere and generically single-valued on U∗. Since f ∗ is twice continuously differentiable,
it follows from the Mean Value Theorem that ∇ f ∗ is locally Lipschitz. Since (∇ f )−1 = ∇ f ∗ is
a locally Lipschitz homeomorphism from U∗ to U, the conclusion follows from Lemma 2.4 and
Lemma 2.5. �

4 Klee Sets

Previously known were the following two results.

Fact 4.1 (
←−
D-Klee sets) (See [8, Theorem 4.4].) Suppose that f is supercoercive, that C is bounded,

and that C is
←−
D-Klee. Then C is a singleton.

Fact 4.2 (
−→
D-Klee sets) (See [5, Theorem 3.2].) Suppose that C is bounded and that C is

−→
D-Klee.

Then C is a singleton.

Fact 4.1 immediately raises the question on whether or not supercoercivity is really an es-
sential hypothesis. Fortunately, thanks to Fact 4.2, which was recently proved for general Leg-
endre functions without any further assumptions, we are now able to present a new result
which removes the supercoercivity assumption in Fact 4.1.

Theorem 4.3 (
←−
D-Klee sets revisited) Suppose that C is bounded and that C is

←−
D-Klee. Then C is a

singleton.

Proof. On the one hand, since C is compact, Fact 1.2 implies that C∗ is compact. On the other

hand, by Lemma 2.2(iii), the set C∗ is
−→
D f ∗-Klee. Altogether, we deduce from Fact 4.2 (applied

to f ∗ and C∗) that C∗ is a singleton. Therefore, C is a singleton by Fact 1.2. �

Similarly to the setting of Chebyshev sets, the set C is “nearly
←−
D-Klee” in the following

sense.

Fact 4.4 (See [7, Corollary 5.2.(ii)].) Suppose that f is supercoercive, that f is twice continuously

differentiable, that for every y ∈ U, ∇2 f (y) is positive definite, and that C is bounded. Then
←−
QC is

almost everywhere and generically single-valued on U.

Again, it would be interesting to see whether or not supercoercivity is essential in Fact 4.4.
Similarly to the proof of Corollary 3.6, we obtain the following result on the single-valuedness

of
−→
Q f ,C.

Corollary 4.5 Suppose that f has full domain, that f ∗ is twice continuously differentiable, that

∇2 f ∗(y) is positive definite for every y ∈ U∗, and that C is bounded. Then
−→
Q f ,C is almost every-

where and generically single-valued on U.

10



5 Chebyshev Centers: Uniqueness and Characterization

Fact 5.1 (
−→
D-Chebyshev centers) (See [5, Theorem 4.4].) Suppose that C is bounded. Then the right

Chebyshev center with respect to C is a singleton, say
−→
ZC = {x}, and x is characterized by

(36) x ∈ ∇ f ∗
(

conv∇ f (
−→
QC(x))

)

.

We now present a corresponding new result on the left Chebyshev center.

Theorem 5.2 (
←−
D-Chebyshev centers) Suppose that C is bounded. Then the left Chebyshev center

with respect to C is a singleton, say
←−
ZC = {y}, and y is characterized by

(37) y ∈ conv
←−
QC(y).

Proof. By Lemma 2.3(ii),

(38)
←−
Z f ,C = ∇ f ∗

(−→
Z f ∗,C∗

)

.

Now C∗ is a bounded subset of U∗ because of the compactness of C and Fact 1.2. Applying

Fact 5.1 to f ∗ and C∗, we obtain that
−→
Z f ∗,C∗ = {y∗} for some y∗ ∈ U∗ and that y∗ is character-

ized by

(39) y∗ ∈ ∇ f
(

conv∇ f ∗(
−→
Q f ∗,C∗(y

∗))
)

.

By (38),
←−
Z f ,C = ∇ f ∗

(−→
Z f ∗,C∗

)

= {∇ f ∗(y∗)} = {y} is a singleton. Moreover, using
Lemma 2.2(ii), we see that the characterization (39) becomes

←−
Z f ,C = {y} ⇔ y∗ ∈ ∇ f

(

conv∇ f ∗(
−→
Q f ∗,C∗(y

∗))
)

⇔ ∇ f ∗(y∗) ∈ conv∇ f ∗(
−→
Q f ∗,C∗(y

∗))

⇔ y ∈ conv∇ f ∗(
−→
Q f ∗,C∗(∇ f (y)))

⇔ y ∈ conv
←−
Qf ,C(y),(40)

as claimed. �

Remark 5.3 The proof of Fact 5.1 does not carry over directly to the setting of Theorem 5.2.
Indeed, one key element in that proof was to realize that the right farthest distance function

(41)
−→
F C = sup

y∈C

D(·, y)

is convex (as the supremum of convex functions) and then to apply the Ioffe-Tihomirov theorem
(see, e.g., [39, Theorem 2.4.18]) for the subdifferential of the supremum of convex function.

In contrast,
←−
FC = supx∈C D(x, ·) is generally not convex. (For more on separate and joint

convexity of D, see [3].)
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6 Chebyshev Centers: Two Examples

Diagonal-Symmetric Line Segments in the Strictly Positive Orthant

In addition to our standing assumptions from Section 1, we assume in this Subsection that the
following hold:

X = R
2;(42)

c0 = (1, a) and c1 = (a, 1), where 1 < a < +∞;(43)

cλ = (1− λ)c0 + λc1, where 0 < λ < 1;(44)

C = conv
{

c0, c1

}

=
{

cλ

∣

∣ 0 ≤ λ ≤ 1
}

.(45)

Theorem 6.1 Suppose that f is any of the functions considered in Example 1.1. Then the left Chebyshev

center is the midpoint of C, i.e.,
←−
ZC = {c1/2}.

Proof. By Theorem 5.2, we write
←−
ZC = {y}, where y = (y1, y2) ∈ U. In view of (37) and

Fact 1.4(ii), we obtain that
←−
QC(y) contains at least two elements. On the other hand, since←−

QC(y) consists of the maximizers of the convex function D(·, y) over the compact set C, [32,

Corollary 32.3.2] implies that
←−
QC(y) ⊆ {c0, c1}. Altogether,

(46)
←−
QC(y) =

{

c0, c1

}

.

In view of (37),

(47) y ∈ C.

On the other hand, a symmetry argument identical to the proof of [5, Proposition 5.1] and the
uniqueness of its Chebyshev center show that y must lie on the diagonal, i.e., that

(48) y1 = y2.

The result now follows because the only point satisfying both (47) and (48) is c1/2, the midpoint
of C. �

Remark 6.2 Theorem 6.1 is in stark contrast with [5, Section 5], where we investigated the
right Chebyshev center in this setting. Indeed, there we found that the right Chebyshev center
does depend on the underlying Legendre function used (see [5, Examples 5.2, 5.3, and 5.5]).
Furthermore, for each Legendre function f considered in Example 1.1, we obtain the following
formula.

(49)
(

∀y = (y1, y2) ∈ U
) ←−

Qf ,C(y) =











{c0}, if y2 < y1;

{c1}, if y2 > y1;

{c0, c1}, if y1 = y2.

Indeed, since for every y ∈ U, the function D(·, y) is convex; the points where the supremum is
achieved is a subset of the extreme points of C, i.e., of {c0, c1}. Therefore, it suffices to compare
D(c0, y) and D(c1, y).
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Intervals of Real Numbers

Theorem 6.3 Suppose that X = R and that C = [a, b] ⊂ U, where a 6= b. Denote the right and left
Chebyshev centers by x and y, respectively. Then 6

(50) x =
f ∗(b∗)− f ∗(a∗)

b∗ − a∗
and y∗ =

f (b)− f (a)

b− a
.

Proof. Analogously to the derivation of (46), it must hold that

(51)
←−
QC(y) = {a, b}.

This implies that y satisfies D(a, y) = D(b, y). In turn, using Fact 1.4(i), this last equation
is equivalent to D f ∗(y

∗, a∗) = D f ∗(y
∗, b∗) ⇔ f ∗(y∗) + f (a) − y∗a = f ∗(y∗) + f (b) − y∗b ⇔

f (b)− f (a) = y∗(b− a)⇔ y∗ = ( f (b)− f (a))/(b− a), as claimed. Hence

(52) y = ∇ f ∗
( f (b)− f (a)

b− a

)

.

Combining this formula (applied to f ∗ and C∗ = [a∗, b∗]) with Lemma 2.3(ii), we obtain that
the right Chebyshev center is given by

(53) x = ∇ f ∗
(

∇ f ∗∗
( f ∗(b∗)− f ∗(a∗)

b∗ − a∗

)

)

=
f ∗(b∗)− f ∗(a∗)

b∗ − a∗
,

as required. �

Example 6.4 Suppose that X = R and that C = [a, b], where 0 < a < b < +∞. In each of
the following items, suppose that f is as in the corresponding item of Example 1.1. Denote the
corresponding right and left Chebyshev centers by x and y, respectively. Then the following
hold.

(i) x = y =
a + b

2
.

(ii) x =
b− a

ln(b)− ln(a)
and y = exp

(b ln(b)− b− a ln(a) + a

b− a

)

.

(iii) x =
ab
(

ln(b)− ln(a)
)

b− a
and y =

b− a

ln(b)− ln(a)
.

Proof. This follows from Theorem 6.3. �

7 Generalizations and Variants

Chebyshev set and Klee set problems can be generalized to problems involving functions.
Throughout this section,

(54) g : X → [−∞,+∞] is lower semicontinuous and proper.

6Recall the convenient notation introduced on page 3!
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For convenience, we also set

(55) q := 1
2‖ · ‖2.

Recall that the Moreau envelope eλg : X → [−∞,+∞] and the set-valued proximal mapping
Pλg : X ⇒ X are given by

(56) x 7→ eλg(x) := inf
w

(

g(w) +
1

2λ
‖x− w‖2

)

and

(57) x 7→ Pλg(x) := argminw

(

g(w) +
1

2λ
‖x−w‖2

)

.

It is natural to ask: If Pλg is single-valued everywhere on R
n, what can we say about the

function g?
Similarly, define φµg : X → [−∞,+∞] and Qµg : X ⇒ X by

(58) y 7→ φµg(y) := sup
x

( 1

2µ
‖y− x‖2 − g(x)

)

,

and

(59) y 7→ Qµg(y) := argmax
x

( 1

2µ
‖y− x‖2 − g(x)

)

.

Again, it is natural to ask: If Qµg is single-valued everywhere on X, what can we say about the
function g? When g = ιC, then Pλg = PC, Qµg = QC, and we recover the classical Chebyshev
and Klee set problems.

Definition 7.1

(i) The function g is prox-bounded if there exists λ > 0 such that eλg 6≡ −∞. The supremum of
the set of all such λ is the threshold λg of the prox-boundedness for g.

(ii) The constant µg is defined to be the infimum of all µ > 0 such that g− µ−1q is bounded below on
X; equivalently, φµg(0) < +∞.

Fact 7.2 (See [33, Example 5.23, Example 10.32].) Suppose that g is prox-bounded with threshold
λg, and let λ ∈

]

0, λg
[

. Then Pλg is everywhere upper semicontinuous and locally bounded on X, and
eλg is locally Lipschitz on X.

Fact 7.3 (See [37, Proposition 4.3].) Suppose that µ > µg. Then Qµg is upper semicontinuous and
locally bounded on X, and φµg is locally Lipschitz on X.

Definition 7.4

(i) We say that g is λ-Chebyshev if Pλg is single-valued on X.

(ii) We say that g is µ-Klee if Qµg is single-valued on X.

Facts 7.5 and 7.7 below concern Chebyshev functions and Klee functions; see [37] for proofs.
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Fact 7.5 (single-valued proximal mappings) Suppose that g is prox-bounded with threshold λg,

and let λ ∈
]

0, λg
[

. Then the following are equivalent.

(i) eλg is continuously differentiable on X.

(ii) g is λ-Chebyshev, i.e., Pλg is single-valued everywhere.

(iii) g + λ−1q is essentially strictly convex.

If any of these conditions holds, then

(60) ∇
(

(g + λ−1q)∗
)

= Pλg ◦ (λ Id).

Corollary 7.6 The function g is convex if and only if λg = +∞ and Pλg is single-valued on X for
every λ > 0.

Fact 7.7 (single-valued farthest mappings) Suppose that µ > µg. Then the following are equiva-
lent.

(i) φµg is (continuously) differentiable on X.

(ii) g is µ-Klee, i.e., Qµg is single-valued everywhere.

(iii) g− µ−1q is essentially strictly convex.

If any of these conditions holds, then

(61) ∇
(

(g− µ−1q)∗
)

= Qµg(−µ Id).

Corollary 7.8 Suppose that g has bounded domain. Then dom g is a singleton if and only if for all
µ > 0, the farthest operator Qµg is single-valued on X.

Definition 7.9 (Chebyshev points) The set of µ-Chebyshev points of g is argmin φµg. If
argmin φµg is a singleton, then we denote its unique element by pµ and we refer to pµ as the µ-
Chebyshev point of g.

The following result is new.

Theorem 7.10 (Chebyshev point of a function) Suppose that µ > µg. Then the set of µ-
Chebyshev points is a singleton, and the µ-Chebyshev point is characterized by

(62) pµ ∈ conv Qµg(pµ).

Proof. As µ > µg, Fact 7.3 implies that

(63) y 7→ φµg(y) =
1

2µ
‖y‖2 +

(

− 1

µ
q + g

)∗
(−y/µ),

is finite. Hence φµg is strictly convex and super-coercive; thus, φµg has a unique minimizer.
Furthermore, we have

(64) ∂φµg(y) =
1

µ

(

y− conv Qµg(y)
)
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by the Ioffe-Tikhomirov Theorem [39, Theorem 2.4.18]. Therefore,

(65) 0 ∈ ∂φµg(y) ⇔ y ∈ conv Qµg(y),

which yields the result. �

We now provide three examples to illustrate the Chebyshev point of functions.

Example 7.11 Suppose that g = q. Then µg = 1 and for µ > 1, we have

(66) φµg : y 7→ sup
x

(

1

2µ
(y− x)2 − x2

2

)

=
y2

2(µ− 1)
.

Hence the µ-Chebyshev point of g is pµ = 0.

Example 7.12 Suppose that g = ι[a,b], where a < b. Then µg = 0 and for µ > 0, we have

(67) φµg : y 7→ sup
x

(

1

2µ
(y− x)2 − ι[a,b](x)

)

=







(y−b)2

2µ if y ≤ a+b
2 ,

(y−a)2

2µ if y >
a+b

2 .

Hence pµ = a+b
2 .

Example 7.13 Let a < b and suppose that g is given by

(68) x 7→











0 if a ≤ x ≤ a+b
2 ,

1 if a+b
2 < x ≤ b,

+∞ otherwise.

Then µg = 0, and when µ > 0 we have

φµg(y) = sup
x

(

1

2µ
(y− x)2 − g(x)

)

= sup
x











1
2µ (y− x)2 if a ≤ x ≤ a+b

2
1

2µ (y− x)2 − 1 if a+b
2 < x ≤ b

−∞ otherwise

= max

{

(y− a)2

2µ
,
(y− (a + b)/2)2

2µ
,
(y− b)2

2µ
− 1

}

,

by using the fact that a strictly convex function only achieves its maximum at the extreme
points of its domain. Elementary yet tedious calculations yield the following. When µ >

(a− b)2/4, we have

φµg(y) =















(y−b)2

2µ − 1 if y <
2µ

a−b +
a+3b

4
(y−(a+b)/2)2

2µ if
2µ

a−b +
a+3b

4 ≤ y <
3a+b

4
(y−a)2

2µ if y >
3a+b

4 ;

while when 0 < µ ≤ (a− b)2/4, one obtains

φµg(y) =







(y−b)2

2µ − 1 if y <
µ

a−b +
a+b

2
(y−a)2

2µ if y ≥ µ
a−b +

a+b
2 .
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Hence, the Chebyshev point of g is

pµ =















3a + b

4
, if µ > (a− b)2/4;

µ

a− b
+

a + b

2
, if 0 < µ ≤ (a− b)2/4.

8 List of Open Problems

Problem 1. Is the assumption that f be supercoercive in Fact 3.1 really essential?

Problem 2. Are the assumptions that f have full domain and that C∗ ⊆ U∗ in Fact 3.2 really
essential?

Problem 3. Does there exist a Legendre function f with full domain such that f is not quadratic

yet every nonempty closed convex subset of X is
−→
D-Chebyshev? In view of Fact 3.1,

the gradient operator ∇ f of such a function would be nonaffine and it would preserve
convexity.

Problem 4. Is it possible to characterize the class of
−→
D-Chebyshev subsets of the strictly pos-

itive orthant when f is the negative entropy? Fact 3.4 and Example 3.3 imply that this
class contains not only all closed convex but also some nonconvex subsets.

Problem 5. Is the assumption that f be supercoercive in Fact 3.5 really essential?

Problem 6. Is the assumption that f be supercoercive in Fact 4.4 really essential?

Problem 7. For the Chebyshev functions and Klee functions, we have used the halved Eu-
clidean distance. What are characterizations of f and Chebyshev point of f when one
uses the Bregman distances?

Problem 8. How do the results on Chebyshev functions and Klee functions extend to Hilbert
spaces or even general Banach spaces?

9 Conclusion

Chebyshev sets, Klee sets, and Chebyshev centers are well known notions in classical Eu-
clidean geometry. These notions have been studied traditionally also in infinite-dimensional
setting or with respect to metric distances induced by different norms. Recently, a new frame-
work was provided by measuring the discrepancy between points differently, namely by Breg-
man distances, and new results have been obtained that generalize the classical results formu-
lated in Euclidean spaces. These results are fairly well understood for Klee sets and Chebyshev
centers with respect to Bregman distances; however, the situation is much less clear for Cheby-
shev sets.

The current state of the art is reviewed in this paper and several new results have been
presented. The authors hope that in the list of open problems (in Section 8) will entice the
reader to make further progress on this fascinating topic.
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