Abstract
In this, essentially survey, article we present some recent advances concerning two regularization procedures for monotone operators: extended and variational sums of maximal monotone operators and, the related to them, extended and variational compositions of monotone operators with linear continuous mappings.
AMS 2010 Subject Classification: 47H05, 46B10, 54C60, 26B25
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asplund, E.: Averaged norms. Israel J. Math. 5, 227–233 (1967)
Attouch, H.: Variational Convergence for Functions and Operators. Math. Series, Pitman, London (1984)
Attouch, H., Baillon, J.-B., Théra, M.: Variational sum of monotone operators. J. Convex Anal. 1, 1–29 (1994)
Attouch, H., Baillon, J.-B., Théra, M.: Weak solutions of evolution equations and variational sum of maximal monotone operators. SEA Bull. Math. 19, 117–126 (1995)
Attouch, H., Riahi, H., Théra, M.: Somme ponctuelle d’opérateurs maximaux monotones. Serdica Math. J. 22, 267–292 (1996)
Bauschke, H.H.: Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings. Proc. Amer. Math. Soc. 135, 135–139 (2007)
Bauschke, H.H., Borwein, J.M., Wang, X.: Fitzpatrick functions and continuous linear monotone operators. SIAM J. Optim. 18, 789–809 (2007)
Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)
Borwein, J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Amer. Math. Soc. 135, 3917–3924 (2007)
Boţ, R.I., Csetnek, E.R.: On two properties of enlargements of maximal monotone operators. J. Convex Anal. 16, 713–725 (2009)
Boţ, R.I., Grad, S.-M., Wanka, G.: Maximal monotonicity for the precomposition with a linear operator. SIAM J. Optim. 17, 1239–1252 (2006)
Boţ, R.I., Csetnek, E.R., Wanka, G.: A new condition for maximal monotonicity via representative functions. Nonlinear Anal., TMA 67, 2390–2402 (2007)
Brezis, H., Crandall, M.G., Pazy, A.: Perturbations of nonlinear maximal monotone sets in Banach space. Comm. Pure Appl. Math. XXIII, 123–144 (1970)
Burachik, R.S., Iusem, A.: On non-enlargable and fully enlargable monotone operators. J. Convex Anal. 13, 603–622 (2006)
Burachik, R.S., Svaiter, B.F.: ε-Enlargements in Banach spaces. Set-Valued Anal. 7, 117–132 (1999)
Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargements of maximal monotone operators with applications to variational inequalities. Set-Valued Anal. 5, 159–180 (1997)
Burachik, R.S., Sagastizábal, C.A., Svaiter, B.F.: ε-Enlargements of maximal monotone operators: Theory and Applications. In: M. Fukushima and L. Qi (eds) Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, 25–43 (1998)
Chu, L.-J.: On the sum of monotone operators. Michigan Math. J. 43, 273–289 (1996)
Fitzpatrick, S.P.: Representing monotone operators by convex functions. Workshop/Mini-conference on Functional Analysis and Optimization. Austral. Nat. Univ., Canberra, 59–65 (1988)
Fitzpatrick, S.P., Simons, S.: The conjugates, compositions and marginals of convex functions. J. Convex Anal. 8, 423–446 (2001)
García, Y.: New properties of the variational sum of monotone operators. J. Convex Anal. 16, 767–778 (2009)
García, Y.: Personal communication
García, Y., Lassonde, M.: Representable monotone operators and limits of sequences of maximal monotone operators. To appear in Set-Valued Analysis and its Applications
García, Y., Lassonde, M., Revalski, J.P.: Extended sums and extended compositions of monotone operators. J. Convex Anal. 13, 721–738 (2006)
Hiriart-Urruty, J.-B., Phelps, R.R.: Subdifferential calculus using ε-subdifferentials. J. Funct. Anal. 118, 154–166 (1993)
Jourani, A.: Variational sum of subdifferentials of convex functions. In: C. Garcia, C. Olivé and M. Sanroma (eds.) Proc. of the Fourth Catalan Days on Applied Mathematics. Tarragona Press University, Tarragona, 71–80 (1998)
Kubo, F.: Conditional expectations and operations derived from network connections. J. Math. Anal. Appl. 80, 477–489 (1981)
Lapidus, M.: Formules de Trotter et calcul opérationnnel de Feynman. Thèse d’Etat, Université Paris VI (1986)
Marques Alves, M., Svaiter, B.: Brøndsted-Rockafellar property and maximality of monotone operators representable by convex functions in nonreflexive Banach spaces. J. Convex Anal. 15, 693–706 (2008)
Martinez-Legaz, J.E., Théra, M.: ε-Subdifferentials in terms of subdifferentials. Set-Valued Anal. 4, 327–332 (1996)
Pennanen, T.: Dualization of generalized equations of maximal monotone type. SIAM J. Optim. 10, 809–835 (2000)
Pennanen, T., Revalski, J.P., Théra, M.: Variational composition of a monotone mapping with a linear mapping with applications to PDE with singular coefficients. J. Funct. Anal. 198, 84–105 (2003)
Penot, J.-P.: Subdifferential calculus without qualification conditions. J. Convex Anal. 3, 1–13 (1996)
Penot, J.-P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal., TMA 58, 855–871 (2004)
Penot, J.-P.: Natural closure, natural compositions and natural sums of monotone operators. J. Math. Pures et Appl. 89, 523–537 (2008)
Penot, J.-P., Zălinescu, C.: Some problems about the representations of monotone operators by convex functions. ANZIAM J. 47, 1–20 (2005)
Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364, Springer, Berlin (1993)
Phelps, R.R.: Lectures on Maximal Monotone Operators. Extracta Mathematicae 12, 193–230 (1997)
Revalski, J.P., Théra, M.: Generalized sums of monotone operators. Comptes Rendus de l’Académie des Sciences, Paris t. 329, Série I, 979–984 (1999)
Revalski, J.P., Théra, M.: Variational and extended sums of monotone operators. In: M. Théra and R. Tichatschke (eds.) Ill-posed Variational Problems and Regularization Techniques. Lecture Notes in Economics and Mathematical Systems, Springer, Vol. 477, 229–246 (1999)
Revalski, J.P., Théra, M.: Enlargements and sums of monotone operators. Nonlinear Anal., TMA 48, 505–519 (2002)
Robinson, S.M.: Composition duality and maximal monotonicity. Math. Program. 85A, 1–13 (1999)
Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149, 75–88 (1970)
Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)
Simons, S.: Maximal monotone multifunctions of Brøndsted-Rockafellar type. Set-Valued Anal. 7, 255–294 (1999)
Simons, S.: From Hahn-Banach to Monotonicity. Lecture Notes in Mathematics, Vol. 1693 (2nd edn.). Springer, Berlin (2008)
Simons, S., Zălinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6 1–22 (2005)
Svaiter, B.F.: Fixed points in the family of convex representations of a maximal monotone operator. Proc. Amer. Math. Soc. 131, 3851–3859 (2003)
Thibault, L.: A general sequential formula for subdifferentials of sums of convex functions defined on Banach spaces. In: R. Durier and C. Michelot (eds.), Recent Developments in Optimization, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Vol. 429, 340–345 (1995)
Thibault, L.: Limiting subdifferential calculus with applications to integration and maximal monotonicity of subdifferential. In: M. Théra (ed.) Constructive, experimental, and nonlinear analysis, CMS Conference Proceedings, Vol. 27, 279–289 (2000)
Torralba, D.: Convergence épigraphique et changements d’échelle en analyse variationnelle et optimisation. Thèse de l’Université de Montpellier II (1996)
Troyanski, S.: On locally uniformly convex and differentiable normes in certain nonseparable Banach spaces. Stuida Math. 37, 173–180 (1971)
Verona, A., Verona, M.: Regular maximal monotone operators and the sum theorem. J. Convex Anal. 7, 115–128 (2000)
Veselý, L.: Local uniform boundedness principle for families of ε-monotone operators. Nonlinear Anal., TMA 24, 1299–1304 (1994)
Voisei, M.D.: A maximality theorem for sum of maximal monotone operators in non-reflexive Banach spaces. Math. Sci. Res. 10, 36–41 (2006)
Voisei, M.D., Zălinescu, C.: Maximal monotonicity criteria for the composition and the sum under weak interiority conditions. Math. Program. 123, 265–283 (2010)
Zeidler, E.: Nonlinear Functional Analysis and its Applications. Vol. II/B Nonlinear Monotone Operators, Springer, Berlin (1990)
Acknowledgements
The author would like to thank Radu Boţ, Yboon García, Marc Lassonde and Constantin Zălinescu, whose valuable remarks after a careful reading of an earlier version of the manuscript, helped to present a more complete picture concerning the notions and the results in this article. The author is also grateful to two anonymous referees for their detailed remarks.
This article was prepared while the author was professeur associé in the group LAMIA in the Department of Mathematics and Informatics of the Université des Antilles et de la Guyane, Guadeloupe, France.
The author has been partially supported by the Bulgarian National Fund for Scientific Research, under grant DO02-360/2008.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Revalski, J.P. (2011). Regularization Procedures for Monotone Operators: Recent Advances. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_16
Download citation
DOI: https://doi.org/10.1007/978-1-4419-9569-8_16
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-9568-1
Online ISBN: 978-1-4419-9569-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)