Skip to main content

The Brézis-Browder Theorem Revisited and Properties of Fitzpatrick Functions of Order n

  • Chapter
  • First Online:
Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 49))

Abstract

In this paper, we study maximal monotonicity of linear relations (set-valued operators with linear graphs) on reflexive Banach spaces. We provide a new and simpler proof of a result due to Brézis–Browder which states that a monotone linear relation with closed graph is maximal monotone if and only if its adjoint is monotone. We also study Fitzpatrick functions and give an explicit formula for Fitzpatrick functions of order n for monotone symmetric linear relations.

AMS 2010 Subject Classification: 47A06, 47H05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartz, S., Bauschke, H.H., Borwein, J.M., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative. Nonlinear Anal. 66, 1198–1223 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators. Pacific J. Math. 189, 1–20 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M., Wang, X.: Fitzpatrick functions and continuous linear monotone operators. SIAM J. Optim. 18, 789–809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Lucet, Y., Wang, X.: Primal-dual symmetric antiderivatives for cyclically monotone operators. SIAM J. Control Optim. 46, 2031–2051 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Wang, X., Yao, L.: An answer to S. Simons’ question on the maximal monotonicity of the sum of a maximal monotone linear operator and a normal cone operator. Set-Valued Var. Anal. 17, 195–201 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Wang, X., Yao, L.: Monotone linear relations: maximality and Fitzpatrick functions. J. Convex Anal. 16, 673–686 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Wang, X., Yao, L.: Autoconjugate representers for linear monotone operators. Math. Program. Ser. B 123, 5–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Wang, X., Yao, L.: Examples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B.F. Svaiter. J. Math. Anal. Appl. 370, 224–241 (2010)

    Google Scholar 

  9. Bauschke, H.H., Wang, X., Yao, L.: On Borwein-Wiersma Decompositions of monotone linear relations. SIAM J. Optim. 20, 2636–2652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauschke, H.H., Wang, X., Yao, L.: On the maximal monotonicity of the sum of a maximal monotone linear relation and the subdifferential operator of a sublinear function. To appear in Proceedings of the Haifa Workshop on Optimization Theory and Related Topics. Contemp. Math., Amer. Math. Soc., Providence, RI (2010). http://arxiv.org/abs/1001.0257v1

  11. Borwein, J.M.: A note on ε-subgradients and maximal monotonicity. Pacific J. Math. 103, 307–314 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press (2010)

    Google Scholar 

  13. Boţ, R.I., Csetnek, E.R.: On extension results for n-cyclically monotone operators in reflexive Banach spaces. J. Math. Anal. Appl. 367, 693–698 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brézis, H., Browder, F.E.: Linear maximal monotone operators and singular nonlinear integral equations of Hammerstein type. In: Nonlinear analysis (collection of papers in honor of Erich H. Rothe), Academic, 31–42 (1978)

    Google Scholar 

  15. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer (2008)

    Google Scholar 

  16. Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10, 297–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  18. Cross, R.: Multivalued Linear Operators. Marcel Dekker (1998)

    Google Scholar 

  19. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Proceedings of the Centre for Mathematical Analysis 20, 59–65. Australian National University, Canberra, Australia (1988)

    Google Scholar 

  20. Haraux, A.: Nonlinear Evolution Equations – Global Behavior of Solutions. Springer, Berlin (1981)

    MATH  Google Scholar 

  21. Penot, J.-P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58, 855–871 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Phelps, R.R.: Convex functions, Monotone Operators and Differentiability, 2nd edn. Springer (1993)

    Google Scholar 

  23. Phelps, R.R., Simons, S.: Unbounded linear monotone operators on nonreflexive Banach spaces. J. Convex Anal. 5, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Springer (2004)

    Google Scholar 

  25. Simons, S.: Minimax and Monotonicity. Springer (1998)

    Google Scholar 

  26. Simons, S.: From Hahn-Banach to Monotonicity. Springer (2008)

    Google Scholar 

  27. Simons, S., Zălinescu, C.: A new proof for Rockafellar’s characterization of maximal monotone operators. Proc. Amer. Math. Soc. 132, 2969–2972 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Simons, S., Zălinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6, 1–22 (2005)

    MATH  Google Scholar 

  29. Svaiter, B.F.: Non-enlargeable operators and self-cancelling operators. J. Convex Anal. 17, 309–320 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Voisei, M.D.: The sum theorem for linear maximal monotone operators. Math. Sci. Res. J. 10, 83–85 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Voisei, M.D., Zălinescu, C.: Linear monotone subspaces of locally convex spaces. Set-Valued Var. Anal. 18, 29–55 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing (2002)

    Google Scholar 

  33. Zeidler, E.: Nonlinear Functional Analysis and its Application, Vol II/B Nonlinear Monotone Operators. Springer, Berlin (1990)

    Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Heinz Bauschke and Dr. Xianfu Wang for valuable discussions. The author also thanks the two anonymous referees for their careful reading and their pertinent comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangjin Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yao, L. (2011). The Brézis-Browder Theorem Revisited and Properties of Fitzpatrick Functions of Order n . In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_18

Download citation

Publish with us

Policies and ethics