Skip to main content

A Linearly Convergent Algorithm for Solving a Class of Nonconvex/Affine Feasibility Problems

  • Chapter
  • First Online:
Book cover Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 49))

Abstract

We introduce a class of nonconvex/affine feasibility problems (NCF), that consists of finding a point in the intersection of affine constraints with a nonconvex closed set. This class captures some interesting fundamental and NP hard problems arising in various application areas such as sparse recovery of signals and affine rank minimization that we briefly review. Exploiting the special structure of (NCF), we present a simple gradient projection scheme which is proven to converge to a unique solution of (NCF) at a linear rate under a natural assumption explicitly given defined in terms of the problem’s data.

AMS 2010 Subject Classification: 90C30, 90C26

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Review 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A., Teboulle., M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sciences 2, 183–202 (2009)

    Google Scholar 

  3. Beck, A., Teboulle, M.: Gradient-based algorithms with applications to signal recovery problems. In: D. Palomar, Y. Eldar (eds.) Convex Optimization in Signal Processing and Communications, 42–88. Cambridge University Press (2010)

    Google Scholar 

  4. Bertsekas, D.: Non-Linear Programming, 2nd ed. Athena Scientific, Belmont, MA (1999)

    Google Scholar 

  5. Blumensath, T., Davies, M.E.: Iterative hard thresholding for Sparse Approximations. The Journal of Fourier Analysis and Applications 14, 629–654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruckstein, A. M., Donoho, D. L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review 51, 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cadzow, J.A.: Signal enhancement – a composite property mapping algorithm. IEEE Trans. Acoustics, Speech, Signal Process. 36, 49–62 (1988)

    Google Scholar 

  8. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52:489–509 (2006)

    Article  Google Scholar 

  9. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. Compte Rendus de l’Academie des Sciences, Paris, Serie I 346, 589–592 (2008)

    MATH  Google Scholar 

  10. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Letters 14, 707–710 (2007)

    Article  Google Scholar 

  11. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Review 43, 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Combettes, P.L.: The foundations of set theoeretic estimation. Proc. IEEE 81, 182–208 (1993)

    Article  Google Scholar 

  13. Combettes, P.L., Trussell, H.J.: Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl. 67, 487–507 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  15. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47, 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elad, M., Bruckstein, A.M.: A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 48, 2558–2567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1996)

    Google Scholar 

  18. Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applications in system theory. In: American Control Conference, 3272–3278 (2004)

    Google Scholar 

  19. Golub, G., Loan, C.V.: Matrix computations, 3rd edn. Johns Hopkins University Press (1996)

    Google Scholar 

  20. Natarajan, B.K.: Sparse approximation solutions to linear systems. SIAM J. Computing 24, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum rank solutions of matrix equations via nuclear norm minimization. SIAM Review 52, 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7, 1307–1330 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Taylor, H.L., Banks, S.C., McCoy, J.F.: Deconvolution with the l 1 norm. Geophysics 44, 39–52 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their useful comments and suggestions. This research was partially supported by the Israel Science Foundation under ISF Grant 489-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beck, A., Teboulle, M. (2011). A Linearly Convergent Algorithm for Solving a Class of Nonconvex/Affine Feasibility Problems. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_3

Download citation

Publish with us

Policies and ethics