Skip to main content

The Newton Bracketing Method for Convex Minimization: Convergence Analysis

  • Chapter
  • First Online:
  • 5266 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 49))

Abstract

Let f be a convex function bounded below with infimum f min attained. A bracket is an interval [L, U] containing f min. The Newton Bracketing (NB) method for minimizing f, introduced in [Levin and Ben-Israel, Comput. Optimiz. Appl. 21, 213–229 (2002)], is an iterative method that at each iteration transforms a bracket [L, U] into a strictly smaller bracket \([{L}_{+},{U}_{+}]\) with \(L \leq {L}_{+} < {U}_{+} \leq U\). We show, under certain conditions on f, that a reduction in the bracket ratio \(({U}_{+} - {L}_{+})/(U - L)\) can be guaranteed by the selection of the method parameters.

AMS 2010 Subject Classification: 52A41, 90C25, 49M15, 90B85

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Israel, A., Levin, Y.: The Newton bracketing method for the minimization of convex functions subject to affine constraints. Discrete Appl. Math. 156, 1977–1987 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cegielski, A.: A method of projection onto an acute cone with level control in convex minimization. Math. Prog. 85, 469–490 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Drezner, Z., Klamroth, K., Schöbel, A., Wesolowsky, G.: The Weber problem. In: Z. Dezner, H.W. Hamacher (eds.) Facility Location: Applications and Theory, Springer (2002)

    Google Scholar 

  4. Fortin, C., Wolkowicz, H.: The trust region subproblem and semidefinite programming. Optimization Methods and Software 19, 41–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Held, M., Wolfe, P., Crowder, H.: Validation of subgradient optimization. Math. Prog. 6, 62–88 (1974)

    MathSciNet  MATH  Google Scholar 

  6. Kim, S., Ahn, H., Cho, S.-C.: Variable target value subgradient method. Math. Prog. 49, 359–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Levin, Y., Ben-Israel, A.: Directional Newton methods in n variables. Math. of Comput. 71, 251–262 (2001)

    Article  MathSciNet  Google Scholar 

  8. Levin, Y., Ben-Israel, A.: The Newton bracketing method for convex minimization. Comput. Optimiz. Appl. 21, 213–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Levin, Y., Ben-Israel, A.: A heuristic method for large–scale multifacility location problems. Computers and Operations Research 31, 257–272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location: Models and Methods. North-Holland (1988)

    Google Scholar 

  11. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, London (1970)

    MATH  Google Scholar 

  12. Ostrwoski, A.M.: Solutions of Equations in Euclidean and Banach Spaces, 3rd edn. Academic (1973)

    Google Scholar 

  13. Poljak, B.T.: Minimization of unsmooth functionals. Z. Vycis. Mat. i Mat. Fiz. 9, 509–521 (1969)

    MathSciNet  MATH  Google Scholar 

  14. Shor, N.Z.: Application of the Gradient Method for the solution of Network Transportation Problems. Notes, Scientific Seminar on Theory and Application of Cybernetics and Operations Research, Academy of Sciences, Kiev (1962)

    Google Scholar 

  15. Shor, N.Z.: Generalized gradient methods for non-smooth functions and their applications to mathematical programming problems. Ekonomika i Matematicheskie Metody 2, 337–356 (1976)

    Google Scholar 

  16. Shor, N.Z., Kiwiel, K., Ruszcayǹski, A.: Minimization methods for non-differentiable functions. Springer (1985)

    Google Scholar 

  17. Wesolowsky, G.O.: The Weber problem: its history and perspectives. Location Science 1, 5–23 (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Ben-Israel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ben-Israel, A., Levin, Y. (2011). The Newton Bracketing Method for Convex Minimization: Convergence Analysis. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_4

Download citation

Publish with us

Policies and ethics