Skip to main content

The Neural Networks for Language in the Brain: Creating LAD

  • Chapter
Computational Models for Neuroscience

Abstract

The neural networks that achieve linguistic skills in the brain are presently being uncovered by brain imaging methods using suitable psychophysical paradigms. We use these and other related results to guide the development of an overall neural architecture to implement Chomsky’s “Language Acquisition Device” or LAD. We then consider in more detail the twin problems of the generation of infinite length sequences and the complexity of the recurrent system that produces such sequences. A recurrent neural network approach is used, based on our cartoon version of the frontal lobes, to analyze these two problems. The first is shown to be soluble in principle for any set of words by means of a set of “phrase analyzers”, which contain complex neurones able to chunk suitable sequences. Further guidance from action and precept representations is indicated as helpful. The second problem is found to be solved by using the simplest level of chunking; this arises naturally in the learning process, according to a set of simulations, provided the task of language learning is suitably hard. We conclude with an overview of future developments to allow a full LAD to be developed so as to begin to approach adult speech.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bowerman, M., Levinson, S.C. (Eds.) (2001) Language Acquisition and Conceptual Development. Cambridge: Cambridge University Press.

    Google Scholar 

  • Brown, R. (1973) A First Language. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Chappell, G.J., Taylor, J.G. (1993) The temporal Kohonen map. Neural Networks 6: 441–445.

    Article  Google Scholar 

  • Chomsky, N. (1972) Language and Mind. New York: Harcourt Brace.

    Google Scholar 

  • Christiansen, M.H., Chater, N., Seidenberg, M.S. (Eds.) (1999) Connectionist models of human language processing: Progress and prospects. Special issue of Cognitive Science 23(4): 415-634.

    Google Scholar 

  • Elman, J.L. (1990) Finding structure in time. Cognitive Science 14: 179–212.

    Article  Google Scholar 

  • Fiez, J.A. (1997) Phonology, semantics and the role of the left prefrontal cortex. Human Brain Mapping 5: 79–83.

    Article  Google Scholar 

  • Gabrieli, J.D.E., Poldrack, R.A., Desmond, J.E. (1998) The role of the left prefrontal cortex in language and memory. Proc. Natl. Acad. Sci. USA 95: 906–913.

    Article  Google Scholar 

  • Gleitman, L.R., Leiberman, M. (Eds.) (1995) Language. Cambridge, MA: MIT Press.

    Google Scholar 

  • Goswami, U. (1998) Cognition in Children. Hove, East Sussex: Taylor & Francis.

    Google Scholar 

  • Greenfield, P.M. (1991) Language, tools, and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral and Brain Sciences 14: 531–595.

    Article  Google Scholar 

  • Haegman, L., Gueron, J. (1999) English Grammar. Oxford: Blackwell.

    Google Scholar 

  • Halsband, U., Matsuzaka, Y., Tanji, J. (1994). Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements. Neuroscience Research 20: 149–155.

    Article  Google Scholar 

  • Hazlehurst, B., Hutchins, E. (1998) The emergence of propositions from the co-ordination of talk and action in a shared world. Language and Cognitive Processes 13: 373–424.

    Article  Google Scholar 

  • Ho, E.K.S., Chan, L.W. (1994) How to design a connectionist holistic parser. Neural Computation 11: 1995–2016.

    Article  Google Scholar 

  • Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA 79: 2554–2558.

    Article  MathSciNet  Google Scholar 

  • Jennings, J.M., Mclntosh, A.R., Kapur, S. (1998) Mapping neural interactivity onto regional activity: An analysis of semantic processing and response mode interactions. Neurolmage 7: 244–254.

    Article  Google Scholar 

  • Jordan, M.I. (1986) Attractor dynamics and parallelism in a connectionist sequential machine. Proceedings of the Cognitive Science Society (Amhurst, MA), pp. 531–546.

    Google Scholar 

  • Kempson, R., Meyer-Viol, W., Gabbay, D. (2000) Dynamic Syntax. Oxford: Black-well.

    Google Scholar 

  • Kohonen, T. (1998) The Self-Organising Map. Berlin: Springer.

    Google Scholar 

  • Monchi, O. (1998) Modelling Functions and Dysfunctions of the Anatomical Circuits Involved in Anterior Working Memory and Attentional Tasks. PhD Thesis, Department of Mathematics, King’s College, University of London (unpublished).

    Google Scholar 

  • Monchi, O., Taylor, J.G. (1995) A model of the prefrontal loop that includes the basal ganglia in solving the recency task. Proc. WCNN’95, Washington, DC, Vol. 3, pp. 48–51.

    Google Scholar 

  • Monchi, O., Taylor, J.G. (1997) In: J.A. Bullinaria, D.W. Glasspool, G. Houghton (Eds.) 4th Neural Computation and Psychology Workshop: Connectionist Representations. London: Springer-Verlag, pp. 142–154.

    Google Scholar 

  • Monchi, O., Taylor, J.G. (1999) A hard wired model of coupled frontal working memories for various tasks. Information Sciences, 113: 221–243.

    Article  Google Scholar 

  • Pinker, S. (1994) The Language Instinct. London: Penguin Press.

    Google Scholar 

  • Pinker, S. (1995) Language acquisition. In: L.R. Gleitman, M. Leiberman (Eds.) Language, Vol. 1. Cambridge, MA: MIT Press, pp. 135–182.

    Google Scholar 

  • Plunkert, K. (Ed.) (1998) Language Acquisition and Connectionism. London: Psychology Press.

    Google Scholar 

  • Silven, M. (2001) Attention in very young infants predicts learning of first words. Infant Behaviour and Development 24: 229–237.

    Article  Google Scholar 

  • Stanley, P. (2001) Aspects of Language Modelling by Neural Networks. King’s College M.Sc., Information Processing and Neural Networks Thesis, University of London (unpublished).

    Google Scholar 

  • Steedman, M. (1999) Connectionist sentence processing in perspective. Cognitive Science 23: 415–634.

    Article  Google Scholar 

  • Steels, L., Vogt, P. (1997) Grounding adaptive language games in robotic agents. In: I. Harvey, P. Husbands (Eds.) Proceedings of the 4th European Conference on Artificial Life. Cambridge, MA: MIT Press.

    Google Scholar 

  • Taylor J.G. (1995) Modelling the mind by PSYCHE. In: F. Fogelman-Soulie, P. Gallinari (Eds.). Proc. ICANN’95. Paris: EC2 & Co, pp. 543–548.

    Google Scholar 

  • Taylor, J.G. (1996) New models of control from biology. In: I. Parmee, M.J. Denham (Eds.) Adaptive Computing in Engineering Design and Control 1996 (ACEDC’96), Proceedings of the 2nd International Conference of the Integration of Genetic Algorithms and Neural Network Computing and Related Adaptive Techniques with Current Engineering Practice.

    Google Scholar 

  • Taylor, J.G. (1999a) Do virtual actions avoid the Chinese room? In: J. Preston, M. Bishop (Eds.) Views into the Chinese Room: New Essays on Searle and Artificial Intelligence. Oxford: Clarendon Press.

    Google Scholar 

  • Taylor, J.G. (1999b) The Race for Consciousness. Cambridge, MA: MIT Press.

    Google Scholar 

  • Taylor, J.G. (2001) LAD: The Long Haul. Lobal Technologies Internal Report. (http:/ /www.lobaltech.com).

    Google Scholar 

  • Taylor, J.G. (2002) Paying attention to consciousness. Trends in Cognitive Sciences 6: 206–210.

    Article  Google Scholar 

  • Taylor, J.G., Alavi, F.N. (1996) A basis for long-range inhibition across cortex. In: J. Sirosh, R. Miikulainen, Y. Choe (Eds.) Lateral Interactions in Cortex: Structure and Function. http://www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/.

    Google Scholar 

  • Taylor, J.G., Taylor, N.R., (2000a) Analysis of recurrent cortico-basal ganglia-tha-lamic loops for working memory. Biological Cybernetics 82: 415–432.

    Article  MATH  Google Scholar 

  • Taylor, J.G., Taylor, N.R., King’s College Technical Reports: BT Reports I-VII. London.

    Google Scholar 

  • Taylor, J.G., Taylor, N.R., Apolloni, B., Orovas, C. (2000) Constructing symbols as manipulable structures by recurrent networks. In: Proceedings of IJCNN’2000, Vol. 2.

    Google Scholar 

  • Taylor, N.R., (1998) Temporal Sequence Storage by Neural Networks. PhD Thesis, Department of Mathematics, King’s College, University of London.

    Google Scholar 

  • Taylor, N.R., Taylor, J.G. (1998) In: D. Heinke, G.W. Humphries, A. Olsen (Eds.) Connectionist Models in Cognitive Neuroscience: The 5th Neural Computation and Psychology Workshop. London: Springer-Verlag, pp. 92–101.

    Google Scholar 

  • Taylor, N.R., Taylor, J.G. (1999a) Learning to generate temporal sequences by models of frontal lobes. IJCNN’99 Proceedings. Erlbaum.

    Google Scholar 

  • Taylor, N.R., Taylor, J.G. (1999b) Modelling the frontal lobes in health and disease. ICANN’99 Proceedings. IEEE Press.

    Google Scholar 

  • Taylor, N.R., Taylor, J.G. (2000b) Hard-wired models of working memory and temporal sequence storage and generation. Neural Networks 13: 201–224.

    Article  Google Scholar 

  • Thomas, M.S.C., Grant, J., Barham, Z., Gsödl, M., Laing, E., Lakusta, L., Tyler, L. K., Grice, S., Paterson, S., Karmiloff-Smith, A. (2001). Past tense formation in Williams syndrome. Language and Cognitive Processes: 16 (2/3), 143–176.

    Article  Google Scholar 

  • Varsta, M., Millan, J. del R., Heikkonen, J. (1997) A recurrent self-organising map for temporal sequence processing. Proceedings of ICANN’97, pp. 421–426.

    Google Scholar 

  • Waibel, A. (1989) Modular construction of time-delay neural networks for speech recognition. Neural Computation 1: 39–46.

    Article  Google Scholar 

  • Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K. (1989) Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing 37: 328–339.

    Article  Google Scholar 

  • Wang, D.L., Arbib, M.A. (1990a) Complex temporal sequence learning based on short-term memory. Proceedings of the IEEE 78(9): 1536–1543.

    Article  Google Scholar 

  • Wang, D.L., Arbib, M.A. (1990b) Timing and chunking in processing temporal order. IEEE Transactions on Systems, Man, and Cybernetics 23: 993–1009.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London Limited

About this chapter

Cite this chapter

Taylor, N.R., Taylor, J.G. (2003). The Neural Networks for Language in the Brain: Creating LAD. In: Hecht-Nielsen, R., McKenna, T. (eds) Computational Models for Neuroscience. Springer, London. https://doi.org/10.1007/978-1-4471-0085-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0085-0_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-593-9

  • Online ISBN: 978-1-4471-0085-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics