Skip to main content

A Topological Framework for Modelling Diagrammatic Reasoning Tasks

  • Chapter
Diagrammatic Representation and Reasoning

Abstract

In this chapter we propose to model some diagrammatic reasoning tasks within a topological framework. We only focus on problems that require a specific diagrammatic reasoning procedure to be solved rather than on reasoning on diagrams To model such cognitive tasks, we propose to represent the problem with topological objects and to model the diagrammatic operations performed on them as topological operations. The idea underlying this proposition is that combinatorial algebraic topology is an adequate and unifying framework to specify and analyse diagrammatic representations and reasoning. To illustrate such a proposal, we present here three applications of this topological framework: the first concerns a categorisation problem, the second deals with hierachy restructuring, and the last one is the ESQIMO system for simple intra-domain analogy solving in unsupervised IQ tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnheim, R. (1969). Visual thinking. Berkeley, CA: University of California Press.

    Google Scholar 

  2. Atkin, R.H. et al. (1976). CHAMP positional chess analyst. International Journal of Man-Machine Studies 8:517–529.

    Article  MathSciNet  MATH  Google Scholar 

  3. Atkin, R.H. (1977). Combinatorial connectivities in social systems. Springer.

    Google Scholar 

  4. Atkin, R.H. (1981). Multidimensional man. London: Penguin.

    Google Scholar 

  5. Barwise, J. and Etchemendy, J. (1995). Heterogenous logic. Chapter in [14].

    Google Scholar 

  6. Bennet, B. (1994). Spatial reasoning with propositional logics. In P. Torasso, J. Doyle and E. Sandewall (Eds), Proceedings of the fourth international conference on principles of knowledge representation and reasoning (KR94). San Francisco: Morgan Kaufmann.

    Google Scholar 

  7. Booch, G. (1991). Object oriented design. Redwood City, CA: Benjamin Cummings.

    Google Scholar 

  8. Casti, J.L. (1994). Complexification. (1st edn). New York: Harper Perennial.

    Google Scholar 

  9. Doreian, P. (1986). Analysing overlaps in food webs. J. Soc. & Biological Structures 9:115–139.

    Article  Google Scholar 

  10. Evans, T.G. (1968). A program for the solution of a class of geometric analogy intelligence-test questions. In Semantic information processing. Cambridge, MA: MIT Press, Ch. 5, pp. 271–353.

    Google Scholar 

  11. Forbus, K.D. (1995). Qualitative spatial reasoning framework and frontiers. Chapter in [14].

    Google Scholar 

  12. Freska, C. (1997). Spatial and temporal structures in cognitive processes. In C. Freska, M. Jantzen and R. Valk (Eds), Foundations of computer science, Vol. 1337 of LNCS. Berlin: Springer.

    Google Scholar 

  13. Gardner, H. (1983). Frames of mind. New York: Basic Books, (Ch. 7).

    Google Scholar 

  14. Glasgow, J., Narayanan, N.H. and Chandrasekaran, B. (1995). Diagrammatic reasoning: Cognitive and computational perspectives. Cambridge, MA: AAAI Press/MIT Press.

    Google Scholar 

  15. Gotts, N.M. (1994). How far can we “C”? defining a “doughnut” using connection alone. In P. Torasso, J. Doyle and E. Sandewall (Eds), Proceedings of the fourth international conference on principles of knowledge representation and reasoning, Bonn, May. San Mateo, CA: Morgan Kaufmann, pp. 246–257.

    Google Scholar 

  16. Gould, P. (1980). Q-analysis, or a language of structure: An introduction for social scientists, geographers and planners. International Journal of Man-Machine Studies 13:169–199.

    Article  MathSciNet  Google Scholar 

  17. Grigni, M., Papadias, D. and Papadimitriou, C. (1995). Topological inference. In Proceedings of the internation joint conferennce on artificial intelligence (IJCAI’95), Montreal, August. San Mateo, CA: Morgan Kaufmann, pp. 901–907.

    Google Scholar 

  18. Hammer, E. (1997). Logic and visual information. Journal of Logic, Language, and Information 6(2):213–216.

    Article  MathSciNet  Google Scholar 

  19. Harel, D. (1995). On visual formalism. Chapter in [14].

    Google Scholar 

  20. Hornsby, K. and Egenhofer, M.J. (1997). Qualitative representation of change. Chapter in [30].

    Google Scholar 

  21. Henle, M. (1994). A combinatorial introduction to topology. New York: Dover.

    MATH  Google Scholar 

  22. Holland, J.H., Holyoak, K.J., Nisbett, R.E. and Thagard, P.R. (1986). Induction - Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.

    Google Scholar 

  23. Hirtle, S.C. (1997). Representational structures for cognitive space: Trees, ordered trees and semi-lattices. Chapter in [30].

    Google Scholar 

  24. Hofstadter, D.R. (1984). The Copycat Project: An experiment in nondeterminism and creative analogies. AI memo 755, MIT Artificial Intelligence Laboratory, Cambridge, MA.

    Google Scholar 

  25. Hocking, J.G. and Young, G.S. (1988). Topology. New-York: Dover.

    MATH  Google Scholar 

  26. Johnson, J. (1991). The mathematics of complex systems. In J. Johnson and M. Loomes M. (Eds), The mathematical revolution inspired by computing. Oxford: Oxford University Press, pp. 165–186.

    Google Scholar 

  27. Johnson, J. (1991). The dynamics of large complex road systems. In J. Griffiths (Ed.), Transport Planning and Control. Oxford: Oxford University Press, pp. 165–186.

    Google Scholar 

  28. Lindsay, R.K. (1995). Images and inferences. Chapter in [14]

    Google Scholar 

  29. Lemon, O. and Pratt, I. (1997). Spatial logic and the complexity of diagrammatic reasonning. Graphics and Vision 6(1):89–109.

    Google Scholar 

  30. Lukose, D., Delugach, H., Keeler, M., Searle, L. and Sowa, J. (1997). Spatial information theory. Berlin: Springer, Vol. 1257 of LNCS

    Google Scholar 

  31. Moore, I. (1996). A simple and efficient algorithm for conferring inheritance hierarchies. In TOOLS 96. TOOLS Europe. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  32. Pimm, J., Lawton, J. and Cohen, J. (1991). Food web patterns and their consequence. Nature 350:669–674.

    Article  Google Scholar 

  33. Shin, S.-J. (1991). An information-theoretic analysis of valid reasoning with Venn diagrams. In J. Barwise et al. (Eds), Situation theory and its applications, Part 2. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  34. Electronic forum of the Thinking With Diagram Workshop. Discussion papers TwD’98http://www.mrc-cbu.cam.ac.uk/projects/twd/discussion-papers

  35. Valencia, E. (1997). Un modèle topologique pour le raisonnement diagrammatique. Rapport pour le DEA Sciences Cognitives, Université de Paris-Sud, LIMSI, France. See alsohttp://www-aviso.cls.fr/html/applications/niveau/global_regional_uk.html

    Google Scholar 

  36. Valencia, E. (1998). Hitch hiker’s guide to Esqimo. Research report RR 1173, LRI, ura 410 CNRS, Université Paris-Sud, Orsay, France, May.

    Google Scholar 

  37. Valencia E. and Giavitto, J.-L. (1998). Algebraic topology for knowledge representation in analogy solving. In C. Rauscher (Ed.), European conference on artificial intelligence (ECAI’98), Brighton, UK, 23–28 August. Christian Rauscher, pp. 23–28.

    Google Scholar 

  38. Valencia, E., Giavitto, J.-L. and Sansonnet J.-P. (1998). ESQIMO: Modelling analogy with topology. In F. Ritter and R. Young (Eds), Second European conference on cognitive modelling (ECCM2), Nottingham, UK, 1–4 April. Nottingham University Press, pp. 1–4.

    Google Scholar 

  39. Wolfram, S. (1988). Mathematica. Redwood City, CA: Addison-Wesley.

    MATH  Google Scholar 

  40. Weber, S.H. and Stolcke, A. (1990). Lo: A testbed for miniature language acquisition. International Computer Science Institute.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Giavitto, JL., Valencia, E. (2002). A Topological Framework for Modelling Diagrammatic Reasoning Tasks. In: Anderson, M., Meyer, B., Olivier, P. (eds) Diagrammatic Representation and Reasoning. Springer, London. https://doi.org/10.1007/978-1-4471-0109-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0109-3_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-242-6

  • Online ISBN: 978-1-4471-0109-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics