Skip to main content

A Neural Network-based approach to system identification for whitening interferometer spectra

  • Conference paper
Neural Nets WIRN Vietri-01

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 800 Accesses

Abstract

In this paper a Neural Network-based approach is presented for the real time noise identification of laser interferometric antennas. The 40-meter Caltech laser interferometer output data, used in our experiments, provides a good testbed of algorithms for noise identification (violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronics noises, glitches and so on) of the interferometric long GW antennas. The algorithms we propose are quite general and robust, taking into account that they do require neither a-priori information on the data, nor precise model, and constitute a powerful tool for data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.G. Blair, The Detection of Gravitational Waves, Cambridge University Press, Cambridge, 1991.

    Book  Google Scholar 

  2. P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, World Scientific Press, New Jersey, 1994.

    Google Scholar 

  3. S. Chen, S.A. Billings, Modelling and Analysis of Nonlinear Time Series, Int. J. Control, Vol.50, No.6, pp. 2151–2171, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. H.D.I. Abarbanel, Analysis of Observed Chaotic Data, Springer, 1996.

    Book  MATH  Google Scholar 

  5. Hornik, K., M. Stinchcombe, and H. White, 1989, Multilayer feedforward networks are universal approximators. Neural Networks, Vol.4 (2), pp.251–257.

    Article  Google Scholar 

  6. S. M. Kay, Modern spectral estimation: Theory and application, Prentice Hall, Englewood Cliffs, 1988.

    MATH  Google Scholar 

  7. C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

    Google Scholar 

  8. D. J. C. MacKay, Hyperparameters: optimise or integrate out ?, Maximum Entropy and Bayesian Methods, Santa Barbara, Dordrecht, 1993.

    Google Scholar 

  9. F. Barone, R. De Rosa, A. Eleuteri, F. Garufi, L. Milano, R. Tagliaferri, A Neural Network-based ARX Model of VIRGO Noise, in Neural Nets WIRN Vietri-99, M. Marinaro and R. Tagliaferri eds., pp. 171–183, Springer-Verlag, London, 1999.

    Chapter  Google Scholar 

  10. Numerical Recipes in C: The Art os Scientific Computing. 1988–1992, Cambrige University Press, Cambrige, p.575. Available at http://www.nr.com.

  11. C.M. Bishop, I.T. Nabey, Netlab Toolbox, Neural Computing Research Group, Aston University, Birmingham, 1996. Available at http://www.ncrg.aston.ac.uk.

    Google Scholar 

  12. Available at http://www.physics3.gwdg.de/tstool.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London Limited

About this paper

Cite this paper

Acernese, F., Milano, L., Barone, F., Eleuteri, A., Tagliaferri, R. (2002). A Neural Network-based approach to system identification for whitening interferometer spectra. In: Tagliaferri, R., Marinaro, M. (eds) Neural Nets WIRN Vietri-01. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0219-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0219-9_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-505-2

  • Online ISBN: 978-1-4471-0219-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics