Abstract
In this paper a Neural Network-based approach is presented for the real time noise identification of laser interferometric antennas. The 40-meter Caltech laser interferometer output data, used in our experiments, provides a good testbed of algorithms for noise identification (violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronics noises, glitches and so on) of the interferometric long GW antennas. The algorithms we propose are quite general and robust, taking into account that they do require neither a-priori information on the data, nor precise model, and constitute a powerful tool for data analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D.G. Blair, The Detection of Gravitational Waves, Cambridge University Press, Cambridge, 1991.
P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, World Scientific Press, New Jersey, 1994.
S. Chen, S.A. Billings, Modelling and Analysis of Nonlinear Time Series, Int. J. Control, Vol.50, No.6, pp. 2151–2171, 1989.
H.D.I. Abarbanel, Analysis of Observed Chaotic Data, Springer, 1996.
Hornik, K., M. Stinchcombe, and H. White, 1989, Multilayer feedforward networks are universal approximators. Neural Networks, Vol.4 (2), pp.251–257.
S. M. Kay, Modern spectral estimation: Theory and application, Prentice Hall, Englewood Cliffs, 1988.
C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.
D. J. C. MacKay, Hyperparameters: optimise or integrate out ?, Maximum Entropy and Bayesian Methods, Santa Barbara, Dordrecht, 1993.
F. Barone, R. De Rosa, A. Eleuteri, F. Garufi, L. Milano, R. Tagliaferri, A Neural Network-based ARX Model of VIRGO Noise, in Neural Nets WIRN Vietri-99, M. Marinaro and R. Tagliaferri eds., pp. 171–183, Springer-Verlag, London, 1999.
Numerical Recipes in C: The Art os Scientific Computing. 1988–1992, Cambrige University Press, Cambrige, p.575. Available at http://www.nr.com.
C.M. Bishop, I.T. Nabey, Netlab Toolbox, Neural Computing Research Group, Aston University, Birmingham, 1996. Available at http://www.ncrg.aston.ac.uk.
Available at http://www.physics3.gwdg.de/tstool.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag London Limited
About this paper
Cite this paper
Acernese, F., Milano, L., Barone, F., Eleuteri, A., Tagliaferri, R. (2002). A Neural Network-based approach to system identification for whitening interferometer spectra. In: Tagliaferri, R., Marinaro, M. (eds) Neural Nets WIRN Vietri-01. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0219-9_16
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0219-9_16
Publisher Name: Springer, London
Print ISBN: 978-1-85233-505-2
Online ISBN: 978-1-4471-0219-9
eBook Packages: Springer Book Archive