Skip to main content

Visual Crowding and Category-Specific Deficits: a Neural Network Model

  • Conference paper
Connectionist Models of Learning, Development and Evolution

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 156 Accesses

Abstract

Various experimental approaches, using static 2D canonical views of living and non-living entities indicate that knowledge representations of these categories are distinct. In a series of experiments a Kohonen self organizing feature map was trained to recognise 2D digitised images. As a result, images of animals and musical instruments were represented within a shared set of processing units, which suggests that they are visually crowded categories, unlike clothing and furniture. These results are in keeping with those from other experimental approaches. Thus, it would appear that the simple interplay between a SOM and 2D images provides a valuable model of one route in visual object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caramazza A. (1998) The interpretation of semantic category-specific deficits: what do they reveal about the organization of conceptual knowledge in the brain ? Neurocase, 4, 265–272.

    Article  Google Scholar 

  2. Behl-Chadha, G. (1996) Basic-level and superordinate-like categorical representations in early infancy. Cognition, 60, 105–141.

    Article  Google Scholar 

  3. French, R. M. & Mareschal, D. (1998) Could category specific semantic deficits reflect differences in the distributions of features within a unified semantic memory ? In Proceedings of the Twentieth Annual Cognitive Science Society Conference. NJ:LEA. 374–379

    Google Scholar 

  4. Rosch, E. (1975) Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104, 192–233.

    Article  Google Scholar 

  5. Tanaka, K. (1996) Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19, 109–139.

    Article  Google Scholar 

  6. Logothetis, N. K. & Sheinberg, D. L. (1996) Visual Object Recognition. Annual Review of Neuroscience, 19, 577–621.

    Article  Google Scholar 

  7. Warrington, E. K. & McCarthy, R. A. (1987) Categories of knowledge: Further fractionations and an attempted integration. Brain, 110, 1273–1296.

    Article  Google Scholar 

  8. McRae, K., de Sa, V. R., and Seidenberg, M.S. (1997) On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General,126, 99–130.

    Article  Google Scholar 

  9. Gaffan, D., and Heywood, C. A. (1993) A spurious category-specific visual agnosia for living things in normal human and non human primates. Journal of Cognitive Neuroscience, 5, 118–128.

    Article  Google Scholar 

  10. Yamane, S., Kaji, S., Kawano, K. (1988) What facial features activate face neurons in the inferotemporal cortex of the monkey? Exp. Brain Res., 139, 209–214.

    Article  Google Scholar 

  11. Gainotti, G., Silveri M. C., Daniele, A., Giustolisi, L (1995) Neuroanatomical correlates of category-specific semantic disorders: a critical survey. Memory, 3, 247–264.

    Article  Google Scholar 

  12. Schyns, P. G. (1991) A modular neural network model of concept acquisition. Cognitive Science, 15, 461–508.

    Article  Google Scholar 

  13. Battig, W. F., & Montague, W. E. (1969) Category norms for verbal items in 56 categories: A replication and extension of the Connecticut category norms. Journal of Experimental Psychology, 80, 1–146.

    Article  Google Scholar 

  14. Snodgrass, J. G., & Vanderwart, M. (1980) A standardised set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning&Memory, 6, 174–215.

    Article  Google Scholar 

  15. Palmer, S. E., Rosch, E., & Chase, P. 91981) Canonical perspective and the perception of objects. In Long, J. & Baddeley, A. (Eds.) Attention and Performance Vol IX, 131–151, Erlbaum.

    Google Scholar 

  16. Kohonen, T. (1988) Self-Organisation and Associative Memory. Berlin: Springer-Verlag.

    Book  Google Scholar 

  17. Kohonen, T and Hari, R. (1999) Where the abstract feature maps of the brain might come from. TINS, 22, 135–139.

    Google Scholar 

  18. Gale, T. M., Done, D. J. and Frank, R. J. Visual crowding and category specific deficits for pictorial stimuli: A neural network model. Cognitive Neuropsychology (in press).

    Google Scholar 

  19. Clark, A. (1997) The Dynamical Challenge. Cognitive Science, 21, 461–481.

    Article  Google Scholar 

  20. Forde, E. M. E., Francis, D., Riddoch, M. J., Rumiati, R. J. and Humphreys, G. W. (1997) On the links between visual knowledge and naming: A single case study of a patient with a category-specific impairment for living things. Cognitive Neuropsychology, 14, 403–458.

    Article  Google Scholar 

  21. Humphreys, G. W., Riddoch, M. J., and Quinlan, P. T. (1988) Cascade processes in picture identification. Cognitive Neuropsychology, 5” 67–103.

    Article  Google Scholar 

  22. Farah, M.J., Meyer, M. M., and McMullen, P. A. (1996) The living/non-living dissociation in not an artefact: Giving an a-priori implausible hypothesis a strong test. Cognitive Neuropsychology, 13, 137–154.

    Article  Google Scholar 

  23. Kurbat M. A. (1997) Can the recognition of living things really be impaired? Neuropsychologia, 35, 813–827.

    Article  Google Scholar 

  24. Kurbat, M. A., & Farah, M. J. (1998) Is the category-specific deficit for living things spurious? Journal ofCognitive Neuroscience, 10,355–361.

    Article  Google Scholar 

  25. Humphreys, G. W., Lamote, C., & Lloyd-Jones, T. J. (1995) An interactive activation approach to object processing: Effects of structural similarity, name frequency, and task in normality and pathology. Memory, 3, 535–586.

    Article  Google Scholar 

  26. Dixon, M., Bub, D. N., & Arguin, M. (1997) The interaction of object form and object meaning in the identification performance of a patient with category-specific visual agnosia. Cognitive Neuropsychology, 14, 1085–1130.

    Article  Google Scholar 

  27. Parkin, A.J., and Stewart, F. (1993) Category-specific impairments? No. A critique of Sartori et al. Quarterly Journal of Experimental Psychology, 46A, 505–509.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Done, J., Gale, T.M., Frank, R.J. (2001). Visual Crowding and Category-Specific Deficits: a Neural Network Model. In: French, R.M., Sougné, J.P. (eds) Connectionist Models of Learning, Development and Evolution. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0281-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0281-6_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-354-6

  • Online ISBN: 978-1-4471-0281-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics