Skip to main content

Hidden Markov Model Interpretations of Neural Networks

  • Conference paper
Connectionist Models of Learning, Development and Evolution

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 159 Accesses

Abstract

Simple recurrent networks (SRN) can learn languages generated by finite state automata (FSA) [5]. The reverse process, i.e., extracting rules from neural networks in order to get FSAs, has also been explored. Rules from neural networks are generally extracted by partitioning the hidden state space of the network. Hidden Markov models (HMM) can also be used to extract FSAs from neural networks. The difference with other approaches is that it is not necessary to use the hidden state space activities of the network to extract the FSA: only the input-output relations of the network are required in fitting a HMM. Nonetheless, equivalent automata can be extracted. HMMs can thus be used to provide interpretations for the representations of neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakker, B. & Jong, M. de. (In press). The epsilon state count. In From animals to animats 6: Proceedings of the sixth international conference on the simulation of adaptive behavior, SAB 2000.

    Google Scholar 

  2. Becker, J. D., Honerkamp, J., Hirsch, J., Fröbe, U., Schlatter, E. & Greger, R. (1994). Analysing ion channels with hidden Markov models. European Journal of Physiology, 426, 328–332.

    Article  Google Scholar 

  3. Chien, J. T. & Wang, H. C. (1997). Telephone speech recognition based on bayesian adaptation of hidden Markov models. Speech Communication, 22(4), 369–384.

    Article  Google Scholar 

  4. Cleeremans, A. & McClelland, J. L. (1991). Learning the structure of event sequences. JEP: General, 120, 235–253.

    Google Scholar 

  5. Cleeremans, A., Servan-Schreiber, D. & McClelland, J. L. (1989). Finite state automata and simple recurrent networks. Neural Computation, 1, 372–381.

    Article  Google Scholar 

  6. Durbin, M. A., Earwood, J. & Golden, R. M. (2000). Hidden Markov models for coding story recall data. In L. R. Gleitman & A. K. Joshi (editors), Proceedings of the twentysecond annual conference of the cognitive science society, 113–117. Lawrence Erlbaum Associates.

    Google Scholar 

  7. Elliott, R. J., Aggoun, L. & Moore, J. B. (1995). Hidden Markov models: Estimation and control. New York: Springer Verlag.

    MATH  Google Scholar 

  8. Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

    Article  Google Scholar 

  9. Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z. & Lee, Y. C. (1992). Learning and extracting finite state automata with second-order recurrent neural networks. Neural Computation, 4, 393–405.

    Article  Google Scholar 

  10. Hopcroft, J. & Ullman, J. (1979). Introduction to automata theory, languages and computation. Redwood City (CA): Addison-Wesley.

    Google Scholar 

  11. Krogh, A. (1998). An introduction to hidden Markov models for biological sequences. In S. L. Salzberg, D. B. Searls & S. Kasif (editors), Computational methods in molecular biology, 45–63. Elsevier.

    Google Scholar 

  12. Nissen, M. J. & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.

    Article  Google Scholar 

  13. Omlin, C. & Giles, C. (1996). Extraction of rules from discrete-time recurrent neural networks. Neural Networks, 9(1), 41–51.

    Article  Google Scholar 

  14. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of IEEE, 77(2), 267–295.

    Google Scholar 

  15. Schmidbauer, O., Casacuberta, F., Castro, M. J. & Hegerl, G. (1993). Articulatory representation and speech technology. Language and Speech, 36(2), 331–351.

    Google Scholar 

  16. Tino, P. & Koteles, M. (2000). Extracting finite state representations from recurrent neural networks trained on chaotic symbolic sequences. IEEE Transactions on Neural Networks. (In press)

    Google Scholar 

  17. Visser, I., Raijmakers, M. E. J. & Molenaar, P. C. M. (In press). Confidence intervals for hidden Markov model parameters. Britishjournal of mathematical and statistical psychology. (Preprint available from: ingmar@dds.nl)

    Google Scholar 

  18. Yang, J., Xu, Y. & Chen, C. S. (1997). Human action learning via hidden Markov model. IEEE Transactions on Systems, Man and Cybernetics, 27(1), 34–44.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this paper

Cite this paper

Visser, I., Raijmakers, M.E.J., Molenaar, P.C.M. (2001). Hidden Markov Model Interpretations of Neural Networks. In: French, R.M., Sougné, J.P. (eds) Connectionist Models of Learning, Development and Evolution. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0281-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0281-6_20

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-354-6

  • Online ISBN: 978-1-4471-0281-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics