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Abstract

ART (Adaptive Resonance Theory) neural networks for fast, stable learning
and prediction have been applied in a variety of areas. Applications include
airplane design and manufacturing, automatic target recognition, financial
forecasting, machine tool monitoring, digital circuit design, chemical
analysis, and robot vision. Supervised ART architectures, called ARTMAP
systems, feature internal control mechanisms that create stable
recognition categories of optimal size by maximizing code compression
while minimizing predictive error in an on-line setting. Special-purpose
requirements of various application domains have led to a number of
ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, Gaussian
ARTMAP, and distributed ARTMAP. The talk at the ANNIMAB-1
conference (Gothenburg, Sweden, May, 2000) will outline some ARTMAP
applications, including computer-assisted medical diagnosis. Medical
databases present many of the challenges found in general information
management settings where speed, efficiency, ease of use, and accuracy are
at a premium. A direct goal of improved computer-assisted medicine is to
help deliver quality emergency care in situations that may be less than
ideal. Working with these problems has stimulated a number of ART
architecture developments, including ARTMAP-IC [1]. A recent
collaborative effort, using a new cardiac care database for system
development, has brought together medical statisticians and clinicians at
the New England Medical Center with researchers developing expert
systems and neural networks, in order to create a hybrid method for medical
diagnosis. The talk will also consider new neural network architectures,
including distributed ART (dART), a real-time model of parallel distributed
pattern learning that permits fast as well as slow adaptation, without
catastrophic forgetting. Local synaptic computations in the dART model
quantitatively match the paradoxical phenomenon of Markram-Tsodyks [2]
redistribution of synaptic efficacy, as a consequence of global system
hypotheses.



1 ART and ARTMAP neural networks

Adaptive resonance theory originated from an analysis of human cognitive
information processing and stable coding in a complex input environment [3,4]. An
evolving series of ART neural network models have added new principles to the early
theory and have realized these principles as quantitative systems that can be applied
to problems of category learning, recognition, and prediction. Each ART network
forms stable recognition categories in response to arbitrary input sequences with
either fast or slow learning regimes. The first ART model, ART 1 [5], was an
unsupervised learning system to categorize binary input patterns. ART 2 [6] and
fuzzy ART [7] extend the ART 1 domain to categorize analog as well as binary
input patterns.

Supervised ART architectures, called ARTMAP systems, self-organize arbitrary
mappings from input vectors, representing features such as spectral values and terrain
variables, to output vectors, representing predictions such as vegetation classes in a
remote sensing application. Internal ARTMAP control mechanisms create stable
recognition categories of optimal size by maximizing code compression while
minimizing predictive error in an on-line setting. Binary ART 1 computations are
the foundation of the first ARTMAP network [8], which therefore learns binary
maps. When fuzzy ART replaces ART 1 in an ARTMAP system, the resulting
fuzzy ARTMAP architecture [9] rapidly learns stable mappings between analog or
binary input and output vectors.

2 Match-based learning, error-based learning,
and fast learning

The central feature of all ART systems is a pattern matching process that compares
the current input with a learned expectation produced by an active code, or
hypothesis. ART matching leads either to a resonant state, which focuses attention
and triggers learning, or to a self–regulating parallel memory search, which
eventually leads to a resonant state, unless the network’s memory capacity is
exceeded. If the search ends at an established code, the memory representation may
stay the same or may be refined to incorporate information from attended portions of
the current input. If the search ends at a new code, the code’s memory representation
begins by learning the current input itself. This match–based learning process is the
foundation of ART code stability. Match–based learning allows memories to change
only when input from the external world is close enough to internal expectations, or
when something completely new occurs. This feature makes ART and ARTMAP
well suited to problems that require on–line learning of large and evolving databases.

Match–based learning is contrasted with error–based learning, which responds to
a mismatch by sending the difference between a target output and an actual output
toward zero, rather than by initiating a search for a better match. Error–based learning
is naturally suited to problems such as adaptive control and the learning of
sensory–motor maps, which require ongoing adaptation to present statistics.
Neuralnetworks that employ error–based learning include back propagation [10] and
other multilayer perceptrons (MLPs).



Many ART applications use fast learning, whereby adaptive weights fully
converge to equilibrium values in response to each input pattern. Fast learning
enables a system to adapt quickly to inputs that occur only rarely but that may
require immediate accurate recall. Remembering many details of an exciting movie is
a typical example of fast learning. When the difference between actual output and
target output defines “error,” present inputs would drive out past learning, since fast
learning zeroes the error on each input trial. Therefore fast learning destabilizes the
memories of error–based models like back propagation. This feature restricts the
domain of most MLPs to off–line applications with a slow learning rate.

3 Distributed coding

In ART and ARTMAP networks, winner–take–all competitive activation supports
stable coding, but this limiting case of competition may cause category proliferation
when noisy inputs are trained with fast learning. In contrast, MLPs feature
distributed McCulloch–Pitts activation, which promotes noise tolerance and code
compression, but which causes catastrophic forgetting with fast learning. A recently
introduced family of networks called distributed ART models combine the best of
these two worlds:  distributed activation enhances noise tolerance and code
compression while new system dynamics retain the stable fast learning capabilities
of winner–take–all (WTA) ART systems [11]. With WTA coding, the unsupervised
distributed ART model (dART) reduces to fuzzy ART and the supervised distributed
ARTMAP model (dARTMAP) reduces to fuzzy ARTMAP. With distributed coding,
these networks automatically apportion learned changes according to the degree of
activation of each node, which permits fast as well as slow learning without
catastrophic forgetting. A parallel distributed match–reset–search process also helps
stabilize memory.

Distributed ART models replace the traditional neural network path weight with
a dynamic weight equal to the rectified difference between coding node activation and
an adaptive threshold. Thresholds increase monotonically during learning according
to a principle of atrophy due to disuse. However, monotonic change at the synaptic
level manifests itself as bidirectional change at the dynamic level, where the result of
adaptation resembles long–term potentiation (LTP) for single pulse or low frequency
test inputs but can resemble long–term depression (LTD) for higher frequencies. This
dynamic is traced to dual computational properties of phasic and tonic components of
the coding signal. During learning, the tonic component increases nonspecifically,
for all inputs, while the phasic component becomes more selective, maximally
favoring the current input. Seemingly paradoxical, the disappearance of LTP
enhancement for high–frequency test inputs has been observed by Markram and
Tsodyks [2] in the neocortex. Analysis of the dART learning system indicated how
these dynamics are precisely the computational components needed to support stable
coding in a real–time neural network.

4 Rules, applications, and biological substrates

ART principles have also been used to explain challenging behavioral and brain data
in the areas of visual perception, visual object recognition, auditory source



identification, variable–rate speech and word recognition, and adaptive sensory–motor
control (e.g., [12,13]). One area of recent progress concerns how the neocortex is
organized into layers. This new work suggests how “laminar computing” leads to
intelligent behavior by modeling how bottom–up, top–down, and horizontal
interactions are organized within the cortical layers. These interactions have thus far
been studied within the visual cortex. Here, a model has been developed to show how
visual cortex (1) stably develops circuits that match environmental constraints, and
continues to refine this structure through adult learning; (2) binds or groups
distributed information into coherent object representations; and (3) pays attention to
important events (e.g., [14]). The mechanisms that govern (1) in the infant are
proposed to lead to properties (2) and (3) in the adult. These results are clarifying
how ART design principles are embedded within the neocortical circuits that
subserve other types of intelligent behaviors, and open the way towards designing
general–purpose vision systems that can autonomously learn optimal operating
parameters in response to specialized image domains.

ART and dART systems are part of a rapidly growing family of attentive
self–organizing systems that have evolved from the biological theory of cognitive
information processing. ART modules have found their way into such diverse
applications as industrial design and manufacturing, the control of mobile robots,
face recognition, remote sensing land cover classification, target recognition, medical
diagnosis, electrocardiogram analysis, signature verification, tool failure monitoring,
chemical analysis, circuit design, protein/DNA analysis, 3–D visual object
recognition, musical analysis, and seismic, sonar, and radar recognition (e.g., [15-
17]). A recent book focuses on the implementation of ART systems as VLSI
microchips [18].

Applications exploit the ability of an ART system to rapidly learn to classify
large databases in a stable fashion, to calibrate confidence in a classification, and to
focus attention upon those featural groupings that the system deems to be important
based upon experience. The learned expertise of an ARTMAP system also translates
to IF–THEN “rules.” Within each recognition code, the expectation, or prototype
represents a rule that predicts a given outcome. With WTA coding, these prototype
vectors provide a transparent set of rules that characterize the decision–making
process. ARTMAP neural networks have now provided new methodologies for
medical database analysis. A case study of this method, applied to a cardiac database
developed at the New England Medical Center (NEMC) [19] is introduced in the
following section.

5 The New England Medical Center (NEMC)
modeling project

A group of physicians and statisticians from the Division of Clinical Care Research
at the New England Medical Center (NEMC) have created a database of Emergency
Department patients who were considered for admission to the coronary care unit. A
primary goal of the NEMC project is to develop methods to support a physician’s
decision making process. The project specifically aims to understand the utility and
limitations of established and new modeling procedures and to promote their
appropriate use in medical research, health care policy, and care assessment. These



goals are accomplished through systematic investigation and rigorous evaluation of
the relative predictive performance of the analyzed modeling methods. The project is
being carried out as a collaboration between the physicians and statisticians who
designed the NEMC cardiac database and researchers from Boston University and
MIT.

5.1 The NEMC database

The NEMC cardiac database consists of the records of 3,068 study subjects examined
at the Emergency Departments (ED) of six participating New England hospitals. The
database includes clinical features available to ED physicians, such as clinical
presentation, history, physical findings, electrocardiogram, socio-demographic
characteristics, and coronary-disease risk factors. Of the 3,068 subjects in the
database, 15.7% were diagnosed with cardiac problems requiring hospitalization.
These positive outcome cases fall into three categories:  arrhythmia, hemodynamic
condition, and ischemia. These positive categories are not mutually exclusive; for
example, arrhythmia and ischemia are usually accompanied by a hemodynamic
condition. The identity of subcategories among the positive outcome variable was
not used during model development. That is, the dichotomous output in the NEMC
database codes only whether a patient required hospitalization, without specifying
particular medical conditions.

The NEMC database includes records for each patient that represent 32 clinical
variables, 199 raw ECG variables, and 78 derived ECG variables. Clinical variables
quantify features such as medical complaints at arrival to the hospital, age, gender,
body-mass index, history of past disease, and medication. The 199 raw ECG
variables for the NEMC database were handpicked from a large pool of describing an
ECG cycle. Chosen variables describe the amplitude, duration, slope, and area for
segments of interest from each of the 12 leads (e.g., Q wave amplitude and duration,
QRS area and duration, ST slope). Several variables describing general aspects of the
ECG cycle were also included (e.g., mean ventricular rate, mean QRS duration, mean
QT interval).

The 78 derived ECG variables in the NEMC database were created to separate
clinically important aspects from irrelevant features of the raw signal. These
variables are thought to be less sensitive to random fluctuations than the raw signal.
Derived ECG variables consist of four groups:

• Five (5) derived ECG variables qualitatively describe the presence or absence
of the following abnormalities in the cardiac cycle:  Q waves, ST elevation, ST
depression, T wave elevation, and T wave inversion. The derivation was based on
recordings from all 12 leads.

• Fifty five (55) derived lead-by-lead ECG variables describe whether the five
abnormalities enumerated above appear in individual leads. If an abnormality is
detected in a raw lead, the same type of abnormality should be registered in one of
its contiguous leads. Otherwise, the abnormality is attributed to noise and the
variable is set to zero.



• Fifteen (15) summary regional ECG variables describe whether the locations
of each of the five abnormalities, in the anterior, inferior, or lateral regions. For
each region, at least two raw leads should have registered the abnormalities.
Otherwise, the abnormality was ignored and the variable was set to zero.

• Three (3) summary dichotomous ECG variables describe the presence or
absence of right bundle branch block, left bundle branch block, and left
ventricular hypertrophy. According to the NEMC researchers, these variables
have been used in previous regression models to override the effect of ST
elevation, although it is not clear what their direct predictive value might be.

5.2 ARTMAP in the NEMC project

ARTMAP-IC [1], an extension of fuzzy ARTMAP [9] and ART-EMAP [20], was
initially designed to solve a computational problems commonly encountered in
medical modeling, including how to encode inconsistent cases, where identical
patient records are associated with different outcomes. When the ARTMAP-IC
system was introduced, its performance was evaluated on four benchmark medical
databases. One of these databases was the Cleveland heart disease database from the
UCI repository [21]. This database contained the records of 303 cardiology patients,
45.9% of which were diagnosed with heart disease. Each record had 13 attributes,
including age, gender, heart rate, angina, ST depression, and ST slope. These initial
simulation results demonstrated ARTMAP-IC’s potential value for cardiac diagnosis.

Exploratory studies of the NEMC database indicated that ARTMAP-IC was not
well suited for this problem. In particular, the low prevalence of positive outcomes
(15.7%) rendered the system’s instance counting feature counterproductive. The final
successful ARTMAP algorithm for the NEMC project did, on the other hand,
incorporate variations of the basic network that had been developed for other
applications. This experience is typical:  a given application usually benefits from
certain model features but not others. A new model extension was also designed to
improve the probability estimation capabilities of the ARTMAP system. Finally,
although ARTMAP can handle an unlimited number of inputs, the significance of
individual variables is clinically important. With 309 input variables in the NEMC
database, variable selection and dimensionality reduction were important for purposes
of interpretation. The project therefore included a novel method for estimation of the
impact of individual input variables within the framework of ARTMAP networks.
With this system, ARTMAP’s generalization capabilities were seen to compare
favorably to those of logistic regression and decision trees.

The logistic regression approach, on the other hand, appears to offer a simple
model with reasonable discrimination and calibration capabilities. This claim of
model simplicity is somewhat misleading because some of the derived variables,
used as inputs to the regression, were laboriously handcrafted and have a great deal of
complexity embedded in them. Still, one may argue that explicit variable derivation
rules have certain advantages over complex self-organizing systems, such as
ARTMAP or decision trees, because one can create rules encoding physicians’



knowledge and diagnostic techniques. A counterargument is that self-organizing
systems can discover unnoted patterns in the data and thus offer new diagnostic
insights. A crucial test for broad acceptance of data-driven modeling approaches such
as ARTMAP in the medical community would be the possibility of unraveling the
information encoded in their complex structure. While an ARTMAP network is
much easier to analyze and interpret than a standard backpropagation network, the
high input dimensionality and the large number of category nodes pose ongoing
challenges to structure visualization and rule extraction.
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