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Abstract

ART (Adaptive Resonance Theory) neural networks for fast, stallming

and prediction have been applied in a variety of areas. Applications include
airplane design and manufacturing, automatic targebgnition, financial
forecasting, machine toomonitoring, digital circuit design, chemical
analysis, and robot vision. SupervisART architectures, calleARTMAP
systems, feature internal control mechanisms thatreate stable
recognition categories of optimalize by maximizingcode compression
while minimizing predictiveerror in anon-line setting. Special-purpose
requirements of variouspplication domains haveled to anumber of
ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, Gaussian
ARTMAP, and distributed ARTMAP. The talk at the ANNIMAB-1
conference (Gothenburg, Sweden, May, 2000) will outline sAREMAP
applications, including computer-assisted medicdiagnosis. Medical
databases present many of the challenfyesd in generalinformation
management settings where speed, efficiency, ease ohndeccuracy are

at a premium. A direct goal of improved computer-assisted medicine is to
help deliver quality emergencgare in situations thatmay be lessthan
ideal. Working with these problems has stimulatechumber of ART
architecture developments, including ARTMAP-IC [1]. A recent
collaborative effort, using aew cardiac caredatabase forsystem
development, has brought togethmedicalstatisticiansandclinicians at

the New England Medical Center with researchedgveloping expert
systems and neural networks, in order to create a hybrid method for medical
diagnosis. Thetalk will also considernew neural networkarchitectures,
including distributed ART (dART), a real-time model of parafiéstributed
pattern learning that permits fast agell as slow adaptation, without
catastrophic forgettingLocal synaptic computations ithe dART model
guantitatively match the paradoxical phenomenon of Markram-Tsodyks [2]
redistribution of synaptic efficacy, as @nsequence oflobal system
hypotheses.



1 ART and ARTMAP neural networks

Adaptive resonanceheory originated from ananalysis of human cognitive
information processing and stable coding in a complex input environment [3,4]. An
evolving series of ART neural network models have added new principlesdarthe
theory and haveealizedthese principles as quantitatisgstems thatan beapplied

to problems ofcategorylearning, recognitionand prediction. EachART network
forms stable recognitiocategories in response to arbitranput sequenceswith
either fast or slow learning regimes. The first ART moddRT 1 [5], was an
unsupervised learningystem tocategorizebinary input patternsART 2 [6] and
fuzzy ART [7] extendthe ART 1 domain to categorizanalog as well abinary
input patterns.

Supervised ART architecturesalled ARTMAP systems self-organize arbitrary
mappings from input vectors, representing features such as spectral valtersaamd
variables, to output vectors, representing predictions such as vegetation classes in a
remote sensing application. Interr@RTMAP control mechanismgreate stable
recognition categories obptimal size by maximizingcode compression while
minimizing predictive error in aron-line setting.Binary ART 1 computations are
the foundation of thdirst ARTMAP network [8], whichthereforelearns binary
maps. When fuzzyART replacesART 1 in anARTMAP system, the resulting
fuzzy ARTMAP architecture [9] rapidly learnstable mappingbetween analog or
binary input and output vectors.

2 Match-based learning, error-based Ilearning,
and fast learning

The central feature of all ART systems is a pattern matghiogessthat compares

the current input with a learned expectation produced by anactive code, or

hypothesis. ART matchintpadseither to a resonant state, whidtuses attention

and triggers learning, or to a self-regulating parallel memory seandfich

eventually leads to aresonant state, unless the network’s memecapacity is

exceeded. Ithe search ends at astablished codehe memory representation may

stay the same or may be refined to incorporate information &ttendedportions of

the current input. If the search ends at a wede,the code’smemoryrepresentation

begins by learning the current input itself. Thistch—basedearning process is the

foundation of ART code stability. Match—based learning allows memoriekange

only when input from the external world is close enough to internal expectations, or

when something completely new occurs. Tféaturemakes ARTand ARTMAP

well suited to problems that require on—line learning of large and evolving databases.
Match—based learning is contrasted wittor—based learningwhich responds to

a mismatch bysendingthe differencebetween a targeiutput and anactual output

toward zero, rather than by initiating a search for a better match. Error—based learning

is naturally suited to problems such adaptive control and the learning of

sensory—motor maps, whickequire ongoing adaptation to presenstatistics.

Neuralnetworkghat employerror-basedearning include backropagation [10] and

other multilayer perceptrons (MLPS).



Many ART applications use fast learninghereby adaptivaveights fully
converge toequilibrium values in response teachinput pattern. Fastearning
enables asystem toadaptquickly to inputs thatoccur only rarely but that may
require immediate accurate recall. Remembering many details of an exciting movie is
a typical example of fast learning/hen the differencebetween actuabutput and
target output defines “error,” present inputs wodiive out past learning, sindast
learningzeroesthe error on eachnput trial. Thereforefast learning destabilizes the
memories oferror-basednodels likeback propagationThis feature restricts the
domain of most MLPs to off-line applications with a slow learning rate.

3 Distributed coding

In ART andARTMAP networks,winner—take—all competitive activation supports
stable coding, but this limiting case of competition ncayse category proliferation
when noisy inputs are trainedwith fast learning. In contrast, MLP$eature
distributed McCulloch—Pitts activation, which promotes noisderanceand code
compression, but which causes catastrophic forgetting with fast learniregeAtly
introducedfamily of networkscalled distributed ARTmodels combine the best of
these twoworlds: distributed activation enhancesnoise tolerance and code
compression while new systedynamics retairthe stable fast learning capabilities
of winner—take—all (WTA) ART systems [11]. WithTA coding, the unsupervised
distributed ART mode(dART) reduces tduzzy ART andthe supervised distributed
ARTMAP model (dAARTMAP) reduces to fuzAaARTMAP. With distributed coding,
these networks automatically apporti@arnedchangesaccording tothe degree of
activation of each node, whichpermits fast as well as slow learning without
catastrophic forgetting. A paralldistributed match—reset—search proadss helps
stabilize memory.

Distributed ART models replace the traditional neural network path weight
adynamic weighequal to the rectified difference between codiogeactivation and
an adaptivehreshold. Thresholdscreasemonotonically during learningaccording
to a principle of atrophylue todisuse. Howevenmnonotonicchange athe synaptic
level manifests itself as bidirectional change at the dynamic level, where the result of
adaptation resembles long—term potentiation (LTP) for single pulse ofréquency
test inputs but can resemble long—term depression (LTD) for higher frequencies. This
dynamic is traced to dual computational properties of phasic and tonic components of
the codingsignal. During learning, the tonic componeéntreases nonspecifically,
for all inputs, while the phasic componebecomes more selective, maximally
favoring the current input. Seemingly paradoxical, the disappearance of LTP
enhancement fohigh—frequencytest inputs haseen observed by Markram and
Tsodyks [2] in the neocortex. Analysis of tHART learningsystemindicated how
these dynamics are precisely the computational componeeded tosupport stable
coding in a real-time neural network.

4 Rules, applications, and biological substrates

ART principles have also been used to explain challenging behaarathlain data
in the areas ofvisual perception, visual object recognitiomuditory source



identification, variable—rate speech and word recognition, and adaptisery—motor
control (e.g., [12,13])Onearea ofrecent progress concerh®w the neocortex is
organizedinto layers. Thisnew work suggests how “laminar computinigads to
intelligent behavior by modeling howbottom—up, top—down,and horizontal
interactions are organized within the cortical layers. These interactionghesvéar

been studied within the visual cortex. Here, a model has been developed to show how
visual cortex (1)stably developscircuits that match environmental constraints, and
continues torefine this structure throughadult learning; (2) binds or groups
distributed information into coherent object representations; and (3) pays attention to
important events (e.g., [14]). The mechanisms tatern (1) in the infant are
proposed tdead toproperties (2and(3) in the adult. These resulgse clarifying

how ART design principlesare embeddedwithin the neocortical circuits that
subserve other types of intelligent behaviargiopen the waytowards designing
general—purposevision systems thatan autonomouslylearn optimal operating
parameters in response to specialized image domains.

ART and dART systemsare part of arapidly growing family of attentive
self-organizing systems thhave evolvedrom the biological theory of cognitive
information processing. ART moduldsave foundtheir way into such diverse
applications as industriglesignand manufacturing, the control of mobile robots,
face recognition, remote sensing land cover classification, target recogmgdital
diagnosis, electrocardiogram analysis, signature verificatbah,failure monitoring,
chemical analysis, circuit design, protein/DNA analysis, 3-D visuabject
recognition, musical analysiandseismic, sonarand radarecognition (e.g.[15-
17]). A recentbook focuses on the implementation &RT systems asvLSlI
microchips [18].

Applications exploit the ability of an ART system tapidly learn to classify
large databases in a stalfideshion, tocalibrateconfidence in alassification,and to
focus attention upon those featural groupings that the sydtems to bémportant
based upon experience. The learned expertise fRAIMAP system alsdranslates
to IF-THEN “rules.” Within eachrecognitioncode,the expectation, or prototype
represents a rule thatedicts agiven outcome. WithNVTA coding, these prototype
vectors provide a transparesét of rules thatcharacterizethe decision—making
process. ARTMAPneural networks haveow provided new methodologies for
medical database analysis. A case studihisf methodapplied to acardiac database
developed athe New England MedicalCenter (NEMC) [19] isintroduced in the
following section.

5 The New England Medical Center (NEMC)
modeling project

A group of physicians and statisticians from the Division of Clinicaie Research
at theNew England MedicaCenter (NEMC) havereated a database Bfmergency
Department patients who were considered for admissighetgoronarycareunit. A
primary goal of the NEMC project is tdevelopmethods to support a physician’s
decision making process. The project specifically aimsnderstandhe utility and
limitations of establishedand new modeling procedures and tgromote their
appropriate use imedical researchealthcarepolicy, and careassessmenfThese



goalsareaccomplishedhrough systematic investigati@ndrigorous evaluation of

the relative predictive performance of thealyzedmodeling methods. The project is
being carried out as a collaboratiobetweenthe physiciansand statisticians who

designedthe NEMC cardiac database amdsearcherérom Boston University and

MIT.

5.1 The NEMC database

The NEMC cardiac database consists of the records of 3,068 study selkgised

at the Emergency Departments (ED) of six participating New England hospitals. The
databaseincludes clinicalfeatures available to E[physicians, such as clinical
presentation, history, physical findingslectrocardiogram, socio-demographic
characteristicsand coronary-diseaseisk factors. Of the 3,068 subjects in the
database5.7% were diagnosedvith cardiac problems requiring hospitalization.
Thesepositive outcomecasedall into three categoriesarrhythmia, hemodynamic
condition,andischemia. Thesgpositive categoriesare not mutually exclusive; for
example, arrhythmiaand ischemia are usually accompanied by a hemodynamic
condition. The identity of subcategories among plesitive outcomevariable was
not used during model development. Tisatthe dichotomous output in the NEMC
database codesnly whether apatient required hospitalization, withoutspecifying
particular medical conditions.

The NEMC databaseéncludesrecordsfor eachpatient thatrepresent 32 clinical
variables, 199 raw ECG variables)d 78 derivedCG variables. Clinicalariables
guantify featuresuch asmedicalcomplaints afarrival to thehospital, agegender,
body-mass indexhistory of pastdisease,and medication. The 19%aw ECG
variables for the NEMC database were handpicked from a pargkeof describing an
ECG cycle. Chosenariablesdescribethe amplitude, duration, slopend area for
segments of interest from each of the 12 leads (e.gva¥@ amplitudeand duration,
QRS area and duration, ST slope). Several variables describing general aspects of the
ECG cycle were also included (e.g., mean ventricular rate, mean QRS dureg#m,
QT interval).

The 78derivedECG variables in theNEMC database werereated to separate
clinically important aspects fronirrelevant features ofthe raw signal. These
variables are thought to be less sensitive to random fluctuations theawtkanal.
Derived ECG variables consist of four groups:

» Five (5) derived ECG variables qualitativedgscribethe presence or absence
of the following abnormalities in theardiaccycle: Q waves, ST elevation, ST
depression, T wave elevation, and T wave inversion. The derivatiobasad on
recordings from all 12 leads.

* Fifty five (55) derived lead-by-lea@CG variablesdescribewhetherthe five
abnormalitiesenumeratecdboveappear in individual leads. If aabnormality is
detected in a raw lead, the same type of abnormality should be registered in one of
its contiguoudeads. Otherwisehe abnormality is attributed tooise and the
variable is set to zero.



» Fifteen (15) summary regional ECG variabtEescribewhetherthe locations

of each of the five abnormalities, in the anterior, inferior, or lateral regions. For
eachregion, at least twgaw leadsshould haveregisteredthe abnormalities.
Otherwise, the abnormality was ignored and the variable was set to zero.

e Three (3) summary dichotomous EC€@ariables describethe presence or
absence ofright bundle branchblock, left bundle branchblock, and left

ventricular hypertrophyAccording to the NEMC researchersthese variables
have beenused in previous regression models tverride the effect of ST
elevation, although it is not clear what their direct predictive value might be.

5.2 ARTMAP in the NEMC project

ARTMAP-IC [1], an extension ofuzzy ARTMAP [9] andART-EMAP [20], was
initially designed tosolve a computational problems commordpcountered in
medical modeling, including how toencodeinconsistent caseswhere identical
patient records areassociatedwith different outcomes.When the ARTMAP-IC
system wasntroduced,its performancewas evaluated onfour benchmarkmedical
databases. One tfiesedatabasegvas theCleveland heart diseaslatabasdrom the
UCI repository [21]. Thidatabase containgte records of303 cardiology patients,
45.9% of whichwere diagnosewith heart disease. Eadlecord had 13ttributes,
including age, gender, heart rate, angina, ST depressidnSTslope. Theseinitial
simulation results demonstrated ARTMAP-IC’s potential value for cardiac diagnosis.

Exploratory studies of the NEM@atabase indicatethat ARTMAP-IC was not
well suited for this problem. In particular, the Igwevalence opositive outcomes
(15.7%) rendered the system’s instanoentingfeature counterproductiv&he final
successfuARTMAP algorithm for the NEMC projectid, on the otherhand,
incorporate variations ofhe basic network thahad been developedfor other
applications. Thisexperience igypical: a given application usually benefftem
certain model featurdsut not others. Anew modelextension was alsdesigned to
improve the probability estimation capabilities of the ARTMAP systé&inally,
although ARTMAPcan handle amnlimited number of inputs, thsignificance of
individual variables is clinically important. With 309 inpudriables in theNEMC
database, variable selection and dimensionality reduction were important for purposes
of interpretation. The project therefore included a novel methoddiimation of the
impact ofindividual input variableswithin the framework of ARTMAP networks.
With this system, ARTMAP’sgeneralization capabilitiesvere seen tocompare
favorably to those of logistic regression and decision trees.

The logisticregression approach, on the othand, appears to offer eimple
model with reasonablaliscriminationand calibration capabilities. This claim of
model simplicity is somewhammisleadingbecausesome of thederived variables,
used as inputs to the regression, were laboriously handcrafted and havedeajreft
complexity embedded in them. Still, one maguethat explicitvariable derivation
rules have certairadvantagesover complex self-organizingystems, such as
ARTMAP or decision trees, becauseone can createrules encoding physicians’



knowledge and diagnostic techniques. A counterargumentthsit self-organizing
systemscan discover unnotedatterns in thedata andthus offer new diagnostic
insights. A crucial test for broad acceptancedafa-drivenmodelingapproaches such
as ARTMAP in themedicalcommunity would bethe possibility ofunraveling the
information encoded intheir complex structure. While an ARTMAP network is
much easier to analyzandinterpret than astandardbackpropagation network, the
high input dimensionalityand the large number ofcategory nodepose ongoing
challenges to structure visualization and rule extraction.
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