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Abstract

Ensemble methods, which combine several classifiers, have been successfully ap-
plied to decrease generalization error of machine learning methods. For most
ensemble methods the ensemble members are combined by weighted summation
of the output, called the linear average predictor. The logarithmic opinion pool
ensemble method uses a multiplicative combination of the ensemble members,
which treats the outputs of the ensemble members as independent probabilities.
The advantage of the logarithmic opinion pool is the connection to the Kullback-
Leibler error function, which can be decomposed into two terms: An average of
the error of the ensemble members, and the ambiguity. The ambiguity is inde-
pendent of the target function, and can be estimated using unlabeled data. The
advantage of the decomposition is that an unbiased estimate of the generalization
error of the ensemble can be obtained, while training still is on the full training set.
These properties can be used to improve classification. The logarithmic opinion
pool ensemble method is tested on the prediction of protein secondary structure.
The focus is on how much improvement the general ensemble method can give
rather than on outperforming existing methods, because that typically involves
several more steps of refinement.

1 Introduction

Empirically it has proven very effective to average over an ensemble of neural net-
works in order to improve classification performance, rather than to use a single neural
network. See [1, 2] for examples in protein secondary structure, [3] for an over-view
of applications in molecular biology. Here we present a general ensemble method, and
show how the error of an ensemble can be written as the average error of the ensemble
members minus a term measuring the disagreement between the members (called the
ensemble ambiguity). This proves that the ensemble is always better than the average
performance — substantiating the empirical observations.

The ambiguity is independent of the training targets and can thus be estimated from
unlabeled data. Therefore an unbiased estimate of the ensemble error can be found
when combining cross-validation and ensemble training. This error estimate can be



used for determining when to stop the training of the ensemble. We test this general
approach to ensemble training on the secondary structure prediction problem. This
problem is well suited for the method, because thousands of proteins without known
structure are available for estimation of ambiguity. It is shown that the estimated error
works well for stopping training, that the optimal training time is longer than for a
single network, and that the method outperforms other ensemble methods tested on
the same data.

2 Theensemble decomposition

An ensemble consists of M predictors f;, which are combined into the combined pre-
dictor F. We consider the case where each predictor outputs a probability vector
{ft,...,fN1, where f! is the estimated probability that input X belongs to class c;.
The ensemble has associated M coefficient {a,...,am} obeying ¥iai = 1,a; > 0.

It is very common to define the ensemble predictor as FYAP = N o f;, which is
called the linear average predictor (LAP). The combined predictor for the logarithmic
opinion pool (LOP) of the ensemble members is

. 1 M .
Fl= Zexp(Zai log ), €))

where Z is a normalization factor given by z’j\‘:lexp(zi"ilai log fi‘ ). This combination
rule is non-linear and asymmetric as opposed to the LAP. Unless otherwise stated, this
is the combined predictor we are considering in this work.

An example set T consist of input-output pairs, where the output is also a proba-
bility vector {t,... ,tN1. The examples are assumed generated by a target function t.
The difference between the target t and the combined predictor F is measured by the
Kullback-Leibler (KL) error function

N '
E(t,F)= J;tJ log (;—JJ) 2

The error is zero if F1 is equal to t! for all j. For all appearances of this error function
the mean over the training set is implicitly taken. If the target probabilities are re-
stricted to one and zero the error function (2) reduces to E(t,F) = — log(F¥), where tX
is one. This would be the case if the error function is used on a training set consisting
of class examples.

The error in (2) can be decomposed into two terms with the LOP in (1)

M M

E(t.F)= ZGiE(tv fi) — ZGiE(F, fi) = (E(t, fi)) — A(f), @)

where A(f) is the ambiguity and (- ) is the weighted ensemble mean. By using
Jensen’s inequality it can be shown that ambiguity is always greater than or equal
to zero. This implies that the error of the combined predictor always is less than or



equal to the mean of the error of the ensemble members. We see that diversity among
the ensemble members without increase in the error of each ensemble member will
lower the error of the combined predictor. The decomposition in (3) also applies for
the LAP ensemble with the quadratic error E(t,F) = (t — F)? replacing (2) [4]. The
LOP decomposition is due to Tom Heskes [5, 6], although it is derived in a slightly
different setting.

We see that the ambiguity term in (3) is independent of the target probability,
which means that the ambiguity can be estimated using unlabeled data, or if the input
distribution is known the ambiguity can be estimated without any data. Assuming we
have estimates of the generalization error of the ensemble members and an estimate
of the ambiguity, the estimated generalization error comes directly from (3). This can
be achieved in the cross-validation ensemble, where the training set is divided into
M equal sized portions. Ensemble member f; is trained on all the portions except for
portion i. The error on portion i is independent of training and can be used to estimate
ensemble member f;’s generalization error. With the estimated ambiguity, this gives
us a method for obtaining an unbiased estimate of the ensemble error and still use all
the training data.

3 Testson the protein secondary structure problem

The method is tested on the standard secondary structure problem, in which the task
is to predict the three-class secondary structure labels a-helix, B-sheet or coil, which
is anything else. There is much work on secondary structure prediction, for overviews
see [3]. The currently most used method is probably the one presented in [1].

The LOP ensemble is suitable for the protein problem for several reasons. Firstly
the protein problem is a classification problem, and the LOP ensemble method is
tailor-made for classification, and secondly there is huge amount of unlabeled data,
i.e. proteins of unknown structure, which can be used to estimate the ambiguity.

The ensemble members are chosen to be neural networks. The output of a neural
network is post-processed by the SOFTMAX function defined as f! = edi/ 5 ed,
where g/ is the linear output (the weighted sum of the hidden units) of output unit
j. This ensures that the ensemble members obey ¥ f! = 1,f! > 0. The ensemble
coefficients are uniform. Learning is done with back-propagation and momentum. A
window of 13 amino acids is used, together with a sparse coding of amino acid into
a vector of size 20, so each network has 260 inputs and three outputs. Each network
has a hidden layer with 50 nodes. All examples in the training set are used once and
only once during each epoch. Weights are updated after a certain number of randomly
chosen examples have been presented (batch-update). During training the batch size
is increased every tenth epoch by a number of examples equal to the square root of the
training set size. The learning rate is decreased inverse proportional to the batch size.
Training is stopped after 500 epochs, or if the validation error is increased by more
than 10 % over the best value.

Our data set consists of 650 non-homologous protein sequences with a total of
about 130000 amino acid [7]. Four-fold cross-validation is used for each test, which
means that the training set is divided into four equally sized sets. Training is done



on three sets with 97000 amino acids in total, while testing is done on the remaining
set of 33000 amino acids. The test set is rotated for each cross-validation run. The
average of the four test runs is calculated.

In the cross-validation ensemble the validation error is the estimate of the gener-
alization error calculated from (3) by using a set of 70000 unlabeled amino acids to
estimate the ambiguity. Seven ensemble members are used, which means that each
one was trained on about 83000 amino acids and validated on 14000. Apart from
the cross-validation ensemble, we also test what we will term a simple ensemble, in
which all the ensemble members are trained on the same training set of 83000 amino
acids, and the validation error is calculated from an independent set of labeled data
containing 14000 amino acids. Note that there is still the four-fold cross-validation as
an ‘outer loop’ for both ensemble methods.

For every tenth epoch the ensemble validation error, the ensemble test error, and
the average test error of the individual ensemble members were calculated. The graphs
in Figure 1 shows for a single test run these values for the cross-validation ensem-
ble. ey ‘ ‘ TTenserd] j
It is clearly seen that an ensemble is ' B
better than the average of the individ-
ual members, as it should be. 5 0%
The cross-validation ensemble reaches
a lower generalization error (represented
by the test error) than the simple en- * o=}
semble. This can be explained by the
fact that the difference in training sets
makes the ensemble members differ ol . . . . . . ]
more than if they are trained on the
same data, and this increases the am- Figure1: Cross-vaidation LOP ensemble
biguity, which in turn lowers the generalization error.

In a practical application, one would select the ensemble at the training epoch with
the lowest validation error. The various errors are shown for the ensemble selected in
this manner. Using the validation error to select the ensemble training makes training
dependent on the validation error, and therefore the estimate of the generalization error
becomes biased. We will call the time of lowest validation error the stopping time. In
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Kullback-Leibler Error

Table 1: The Kullback-Leibler errors and misclassification rates at stopping time.

Combination rule LOP LOP LAP

Validation error Cross-validation ~ Simple Cross-validation
Train error function KL KL MSE

Test error 0.2546 0.2585 0.6293

Average of indiv. 0.287 4+- 0.010 0.2802 £ 0.0065 1.46 4+-0.12
Misclassification rate  0.3331 0.3385 0.3542
Ambiguity 0.0327 0.0217 0.8320

Table 1 the Kullback-Leibler error and misclassification rate at stopping time for the



test runs is given. In these runs the validation error fluctuates by about +3 % around
the test error. However, the oscillations of the validation error follows the oscillations
of the test set error, as can be seen in Figure 1, so the validation error can still be used
to find the lowest test error. The validation error is not always lowest when the test
set error is lowest, so a measure of the usability of validation error for stopping is the
average difference between the lowest test set error and the test set error at stopping
time. For both types of ensembles this difference is as low as 0.0001 or close to 0.05
%. So the estimated generalization error can very accurately be used to find the right
stopping time.

The cross-validation ensemble reaches a test error that is 1.5 % lower than for the
simple ensemble, and a misclassification rate that is 1.6 % lower. The explanation is
in a larger ambiguity for the cross-validation ensemble, since the average test error of
the ensemble members are comparable. The ambiguity of cross-validation ensemble
is 1.5 times the ambiguity for the simple ensemble.

As noted in section 2 the error of the combined predictor is always better than the
average of the error of the ensemble members. Still, one of the ensemble members can
be better than the combined predictor. For the cross-validation ensemble method the
test error is 0.2546, while the average of the error of the ensemble members is 0.2873.
The difference (the ambiguity) is 0.0327. A gain of 12.8 %, which is substantial. The
standard deviation on the test error of the ensemble members is 0.010, so the ambiguity
is more than three times larger. It is very unlikely that any ensemble member has a
lower generalization error than the ensemble error. For the simple ensemble method
the ambiguity is smaller: 0.0217 or a gain of 8.4 %. The standard deviation among the
ensemble members is 0.0065, so the ambiguity is more than three times the deviation.

The lowest average error for the ensemble members do not have to happen when
the ensemble error is lowest. Typically the lowest average generalization error of the
ensemble members will be reached before the lowest generalization error for the en-
semble, so the ensemble can actually gain from overfitting in the individual ensemble
members. This effect can be seen in Figure 1. Also the optimal architecture for a
simple predictor is often smaller than for ensemble members. A number of single
predictors with different size hidden layer has been trained. The number of nodes in
the hidden layer are varied from 3 to 400. The training must be done with a separate
validation set, since there is no ambiguity for a single predictor. The best result is
achieved with 10 hidden nodes giving an average generalization error of 0.2598, and
misclassification rate of 0.3413, which is respectively 2.0 %, and 2.5 % more than for
the cross-validation LOP ensemble.

A standard cross-validation ensemble using the MSE error function and LAP com-
bination rule is trained on the same data as the cross-validation LOP ensemble. The
validation error is calculated using (3) even though the outputs do not necessary sum to
one. The validation error have lost it’s meaning as an error, e.g. it can be negative, but
it is still valid as an early stopping indicator. This is supported by the fact that the low-
est misclassification rate on the test set is only 0.6 % lower than the misclassification
rate on the test set at stopping time. The generalization error for the standard ensemble
is much higher measured with the KL error function, namely 0.6293 or about 2.5 times
more than the cross-validation LOP ensemble. This is not a fair comparison, since the
LOP ensemble is trained to minimize the KL error. Another measure is the misclassi-



fication rate. For the standard ensemble the misclassification rate is 0.3542, which is
6.3 % more than the misclassification rate of the cross-validation LOP ensemble.
Surprisingly the benefit is not in the combination rule. A test run, where the LOP
is replaced with the LAP, while training still uses the KL error, yields a generaliza-
tion of 0.2543, which is essentially the same as for the LOP combination rule. The
misclassification rate for the LAP is 0.3363, which 1.0 % more than the LOP.

4 Conclusion

It was shown how the generalization error of an ensemble of predictors using a log-
arithmic opinion pool (LOP) can be estimated using cross-validation on the training
set and an estimate of the ambiguity from an independent unlabeled set of data. When
testing on prediction of protein secondary structure it was shown that this estimate
follows the oscillations of the error measured on an independent test set.

The estimated error can be used to stop training when it is at a minimum, and
it was shown that the cross-validation LOP ensemble method is superior to single
predictors and standard ensemble methods using mean square error function on the
protein problem. The benefit is not as much in the combination rule, as in the use of
the Kullback-Leibler error function and the target independent ambiguity term.
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