Skip to main content

Outstanding Issues for Clinical Decision Support with Neural Networks

  • Conference paper
Artificial Neural Networks in Medicine and Biology

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

Neural networks are widely used in potential medical applications, going as far as their introduction into commercial products. However, these pilot studies often ignore important aspects for clinical decision support. The context for the development of new medical technology is introduced, outstanding issues of principle for clinical support are identified, and their technical implications for neural network methodology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fisher, J.C. and Pry, R.H. A simple model of technological change. Technol. Forecat. Soc. Change, 1971; 3:75–81.

    Article  Google Scholar 

  2. Kevin Wildes, S.J. More questions than answers; the commodification of health care. J. Med. and Philos. 1999, 24(3): 307–311.

    Article  Google Scholar 

  3. Khushf, G. A radical rapture in the paradigm of modern medicine: conflicts of interest, fiduciary obligations, and the scientific ideal. J. Med. and Philos. 1998, 23(1): 98–122.

    Article  Google Scholar 

  4. Cardoso, J.-F. Higher-order contrasts for Independent Components Analysis. Neur. Comp. 1999, 11: 157–192.

    Article  Google Scholar 

  5. Mango, L.J. and Valente, P.T. Neural-network-assisted nalysis and microscopi recreening in presumed negative cervical cytologic smears — a comparison. Acta Cytol. 1998, 42(1):227–232.

    Article  Google Scholar 

  6. Dreiseitl, S., Ohno-Machado, L. and Vinterbo, S. Evaluating variable selection methods for diagnosis of myocardial infarction. Proc. AMIA Symp. 1999, (1-2):246–250.

    Google Scholar 

  7. Lisboa, P.J.G., Ifeachor, E.C. and Szczepaniak, P.S. (eds.) Artificial neural networks in biomedicine. Springer-Verlag, London, 2000.

    Google Scholar 

  8. Wong, L.S. and Young, J.D. A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural networks. Anaesth., 45(11): 1048–1054.

    Google Scholar 

  9. Alonso-Betanzos A., et al. Applying statistical, uncertainty-based and connectionist approaches to the prediction of fetal outcome: a comparative study. Artif Intell Med 1999, 17(1):37–57.

    Article  Google Scholar 

  10. Mattfeld, T. Kestler, H.A., Hautman, R. and Gottfried, H.W. Predictio of prostatic cancer progression after radical prostectomy using artificial neural networks: a feasibility study. BJU Int. 1999, 84(3): 316–332.

    Article  Google Scholar 

  11. Shortliffe E H. The adolescence of AI in medicine: will the field come of age in the’ 90s? Art. Intel. Med 1993;. 5: 93–106.

    Article  Google Scholar 

  12. Mango, L.J., Tjon, R., and Herriman, J.M. An automated system for detecting missed pap smears. In: Proc. World Cong, on Neur. Netw., Wahington, D.C., 11:880–883, 1996.

    Google Scholar 

  13. Schechter, C.B. Cost-effectiveness of rescreening conventionally prepared cervical smears by Papnet testing. Acta Cyt. 1996, 40(6)

    Google Scholar 

  14. Ripley, B.D. Pattern recognition and neural networks. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  15. Bishop, C.M. Neural networks for pattern recognition. Oxford University Press, Oxford, 1995.

    Google Scholar 

  16. Van de Laar, P. and Heskes, T. Pruning using parameter and neuronal metrics, Neur. Comp. 1999, 11: 977–1033.

    Article  Google Scholar 

  17. Lowe, D. and Webb, A.R. Optimized feature extraction and the Bayes decision in feed-forward classifier networks. IEEE-PAMI, 13(4):355–364.

    Google Scholar 

  18. Lisboa, P.J.G., Wong, H., Vellido, A., Kirby, S.P.J., Harris, P. and Swindell, R. ‘Survival of Breast Cancer Patients Following Surgery: a Detailed Assessment of the Multi-Layer Perceptron and Cox’s Proportional Hazard Model’, IJCNN, 1998: 112–116.

    Google Scholar 

  19. Chan, H.P., Sahiner, B., Wagner, R.F. and Petrick, N. Classifier design for computer-aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers. Med. Phys. 1999, 26(12):2654–2668.

    Article  Google Scholar 

  20. Hanley, J.A. and McNeil, B.J. The meaning and use of the area under the reciever operating characteristic (ROC) curve. Radiology 1982, 143:29–36.

    Google Scholar 

  21. Hirsch, S., Shapiro, J. and Frank, P. Use of an artificial neural network in estimating prevalience and assessing underdiagnosis of asthma. Neur. Comp. App. 1997, 5(2): 124–128.

    Article  Google Scholar 

  22. Bishop, C.M. and Cazhaow, S.Q. Regression with input-dependent noise: a Bayesian treatment. In Adv. Neur. Inf. Proc. Syst. (NIPS) 9, 1997.

    Google Scholar 

  23. Agogino, A., Ghosh, J., Perantonis, S.J., Virvilis, V., Petridis, S. and Lisboa, P.J.G. The role of multiple, linear-projection based visualisation techniques in RBF-based classification of high-dimensional data. To appear in IJCNN 2000.

    Google Scholar 

  24. Speigelhalter, D.J. Bayesian graphical modelling: a case-study in monitoring health outcomes. App. Statist. 1998, 47(1): 115–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this paper

Cite this paper

Lisboa, P.J.G., Vellido, A., Wong, H. (2000). Outstanding Issues for Clinical Decision Support with Neural Networks. In: Malmgren, H., Borga, M., Niklasson, L. (eds) Artificial Neural Networks in Medicine and Biology. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0513-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0513-8_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-289-1

  • Online ISBN: 978-1-4471-0513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics