Skip to main content

Meeting the Welch Bound with Equality

  • Conference paper
Sequences and their Applications

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

Abstract

A signal set whose root-mean-square inner product magnitude equals the Welch lower bound is called a WBE signal set. WBE signal sets are of interest in synchronous CDMA communication systems. This chapter surveys the known results on WBE signal sets and extends them in several ways. In particular, WBE signal sets over signal alphabets whose size is a prime power (the most important case is the quaternary alphabet), and arbitrary-size WBE signal sets over small alphabets are constructed. Constructions are also described for signal sets whose maximum inner product magnitudes equal (or are only very slightly larger than) the Welch bound. Similarly, signal sets whose rootmean-square correlation magnitudes equal the Welch lower bound on correlations are of interest in asynchronous CDMA communication systems. It is shown that the root-mean-square correlation magnitude of all WBE signal sets (and many more) equals the Welch bound. Finally, the signal-to-noise ratio for CDMA communication systems using WBE signal sets is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. O. Alltop, “Complex sequences with low periodic correlations,” IEEE Trans. Inform. Theory, vol IT-26, pp. 350–354, May 1980.

    Article  MathSciNet  Google Scholar 

  2. I. F. Blake and R. C. Mullin, The Mathematical Theory of Coding, New York: Academic Press, 1975.

    MATH  Google Scholar 

  3. S. Bortas, R. Hammons, and P. V. Kumar, “4-phase sequences with near-optimum correlation properties,” IEEE Trans. Inform. Theory, vol. 38, pp. 1101–1113, May 1992.

    Article  Google Scholar 

  4. H. Fukumasa, R. Kohno, and H Imai, “Design of pseudonoise sequences with good odd and even correlation properties for DS/CDMA,” IEEE J. Selected Areas Commun., vol. 12, pp. 828–836, June 1994.

    Article  Google Scholar 

  5. M. J. E. Golay, “Complementary series,” IRE Trans. Inform. Theory, vol. IT-7, pp. 82–87, April 1961.

    MathSciNet  Google Scholar 

  6. A. R. Hammons Jr., P. V. Kumar, A. R. Calderbamk, N. J. A. Sloane, and P. Solé, “The Z4 linearity of Kerdock, Preparata, Goethals, and related codes,” IEEE Trans. Inform. Theory, vol. 40, pp. 301–319, March 1994.

    Article  MATH  Google Scholar 

  7. T. Helleseth and P. V. Kumar, “Pseudonoise sequences,” in The Communications Handbook, J. D. Gibson (ed.), Piscataway, NJ: IEEE Press, 1997.

    Google Scholar 

  8. T. Helleseth and P. V. Kumar, “Sequences with low correlation,” in Handbook of Coding Theory, V. Pless (ed.), Elsevier Press (1998).

    Google Scholar 

  9. S. M. Krone and D. V. Sarwate, “Quadriphase sequences for spread-spectrum multiple-access communication,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 520–529, May 1984.

    Article  MathSciNet  Google Scholar 

  10. P. V. Kumar and C.-M. Liu, “On lower bounds to the maximum correlation of complex, roots-of-unity sequences,” IEEE Trans. Inform. Theory, vol. 36, pp. 633–640, May 1990.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. I. Levenshtein, “Bounds on the maximum cardinality of a code with bounded modulus of the inner product,” Soviet Math. Dokl., vol. 25, pp. 526–531, 1982.

    Google Scholar 

  12. F. J. MacWilliams and N. J. A. Sloane, “Pseudorandom sequences and arrays,” Proc. IEEE, vol. 64, pp. 1715–1729, December 1976.

    Article  MathSciNet  Google Scholar 

  13. F. J. MacWilliams and N. J. A. Sloane, Theory of Error Correcting Codes. Amsterdam: North Holland, 1977.

    MATH  Google Scholar 

  14. J. L. Massey and T. Mittelholzer, “Welch’s bound and sequence sets for code-division multiple-access systems,” in Sequences II: Methods in Communication, Security, and Computer Science, R. Capocelli, A. De Santis, and U. Vaccaro, (eds.), pp. 63–78, New York: Springer-Verlag, 1993.

    Chapter  Google Scholar 

  15. W. H. Mow, “On the bounds on odd correlation of periodic sequences,” IEEE Trans. Inform. Theory, vol. 40, pp. 954–955, May 1994.

    Article  MATH  Google Scholar 

  16. W. H. Mow, “Optimal sequence sets meeting Welch’s lower bound,” Proc. 1995 IEEE Int’l. Symp. Inform. Theory, (Whistler, Canada: September 17–22, 1995) p. 89.

    Google Scholar 

  17. M. B. Pursley, “Performance evaluation for phase-coded spread-spectrum multiple-access communication — Part I: System analysis,” IEEE Trans. Commun., vol. COM-25, pp. 795–799, August 1977.

    Article  Google Scholar 

  18. M. B. Pursley and D. V. Sarwate, “Evaluation of correlation parameters for periodic sequences,” IEEE Trans. Inform. Theory, vol. IT-23, pp. 508–513, July 1977.

    Article  MathSciNet  Google Scholar 

  19. M. B. Pursley and D. V. Sarwate, “Performance evaluation for phase-coded spread-spectrum multiple-access communication — Part II: Code sequence analysis,” IEEE Trans. Commun., vol. COM>-25, pp. 800–803, August 1977.

    Article  Google Scholar 

  20. M. Rupf and J. L. Massey, “Optimum sequence multisets for synchronous code-division multiple-access channels,” IEEE Trans. Inform. Theory, vol. 40, pp. 1261–1266, July 1994.

    Article  MATH  Google Scholar 

  21. D. V. Sarwate, “Bounds on crosscorrelation and autocorrelation of sequences,” IEEE Trans. Inform. Theory, vol. IT-25, pp. 720–724, November 1979.

    Article  MathSciNet  Google Scholar 

  22. D. V. Sarwate, “Sets of complementary sequences,” Electronics Letters, vol. 19, pp. 711–712, September 1983.

    Article  Google Scholar 

  23. D. V. Sarwate, “Mean-square correlation of shift register sequences,” IEE Proceedings, vol. 131, Part F, pp. 101–106, April 1984.

    Google Scholar 

  24. D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseudorandom and related sequences,” Proc. IEEE, vol. 68, pp. 593–619, May 1980.

    Article  Google Scholar 

  25. H. D. Schotten, “Mean-square correlation parameters of code sequences in DSCDMA systems,” Proc. 1997 IEEE Intl. Symp. Inform. Theory, (Ulm, Germany: June 29-July 4, 1997), p. 486.

    Google Scholar 

  26. V. M. Sidelnikov, “On mutual correlation of sequences,” Soviet Math. Dokl., vol. 12, pp. 197–201, 1971.

    Google Scholar 

  27. S. G. S. Shiva, “Some results on binary codes with equidistant words,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 328–329, March 1969.

    Article  MathSciNet  Google Scholar 

  28. F.-W. Sun and H. Leib, “Optimal phases for a family of quadriphase CDMA sequences,” IEEE Trans. Inform. Theory,vol. 43, pp. 1205–1217, July 1997.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Taki, H. Miyakawa, M. Hatori, and S. Namba, “Even-shift orthogonal sequences,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 295–300, March 1969.

    Article  MathSciNet  Google Scholar 

  30. C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 644–652, September 1972.

    Article  MathSciNet  Google Scholar 

  31. P. Viswanath, V. Anantharam, and D. Tse, “Optimal sequences, power control and capacity of synchronous CDMA systems with linear multiuser receivers,” Proc. 1998 IEEE Inform. Theory Workshop, (Killarney, Ireland: June 22–26, 1998), pp. 134–135.

    Google Scholar 

  32. P. Viswanath and V. Anantharam, “Optimal sequences and sum capacity of synchronous CDMA systems,” Proceedings of the 36th Allerton Conference on Communication, Control, and Computing, (Monticello, Illinois: September 23–25, 1998), pp. 272–281.

    Google Scholar 

  33. L. R. Welch, “Lower bounds on the maximum cross correlation of signals,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 397–399, May 1974.

    Article  MathSciNet  Google Scholar 

  34. N. Zierler, “A note on the mean square weight for group codes,” Information and Control, vol. 5, pp. 87–89, January 1962.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London

About this paper

Cite this paper

Sarwate, D.V. (1999). Meeting the Welch Bound with Equality. In: Ding, C., Helleseth, T., Niederreiter, H. (eds) Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0551-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0551-0_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-196-2

  • Online ISBN: 978-1-4471-0551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics