Skip to main content

Constructions of Sequences from Algebraic Curves over Finite Fields

  • Conference paper
Sequences and their Applications

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

Summary

We survey some recent constructions of various sequences based on algebraic curves over finite fields. The sequences constructed in this paper include sequences with good linear complexity profiles and sequence families with both large linear complexities and low correlation.

This work is supported by MOE-ARF under Research Grant R146-000-018-112 and by the Chinese Academy of Science under the 100-person program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions Academic Press, New York, 1951.

    Google Scholar 

  2. T. Heileseth and PV Kumar Sequences with Low Correlation a chapter in: Handbook of Coding Theory edited by V Pless and C Huffman Elsevier Science Publishers, 1998.

    Google Scholar 

  3. D. Kohel, S Ling, and CP Xing Explicit sequence expansions In: Sequences and Their Applications (C Ding, T Heileseth, and H Niederreiter, eds.), pp. 308–317, Springer London 1999.

    Chapter  Google Scholar 

  4. H. Niederreiter Continued fractions for formal power series, numbers7 and linear complexity of sequences In: Contributions to General Algebra 5 (Proc. Salzburg Conf 1986), pp. 221–233, Teubner, Stuttgart 1987.

    Google Scholar 

  5. H. Niederreiter Sequences with almost perfect linear complexity profile In: Advances in Cryptology - EUROCRYPT’87(D Chaum and WL Price, eds.), Lecture Notes in Computer Science Vol. 304 pp. 37–51 Springer Berlin 1988.

    Google Scholar 

  6. H. Niederreiter The probabilistic theory of linear complexity In: Advances in Cryptology — EUROCRYPT ’88 (CG Günther ed.), Lecture Notes in Computer Science Vol. 330 pp. 191–209 Springer Berlin 1988.

    Google Scholar 

  7. H. Niederreiter Keystream sequences with a good linear complexity profile for every starting point In: Advances in Cryptology — EUROCRYPT ’89 (JJ Quisquater and J Vandewalle, eds.), Lecture Notes in Computer Science Vol. 434 pp. 523–532 Springer Berlin 1990.

    Google Scholar 

  8. H Niederreiter Finite fields and cryptology In: Finite Fields, Coding Theory, and Advances in Communications and Computing (GL Mullen and PJS Shiue, eds.), pp. 359–373 Dekker New York 1993.

    Google Scholar 

  9. H. Niederreiter Some computable complexity measures for binary sequences In: Sequences and Their Applications (C Ding, T Helleseth, and H Niederreiter, eds.), pp. 67–78 Springer London 1999.

    Chapter  Google Scholar 

  10. H. Niederreiter and M. Vielhaber, Linear complexity profles: Hausdorff dimensions for almost perfect profiles and measures for general profiles J. Complexity 13(1997), 353–383.

    Article  MathSciNet  MATH  Google Scholar 

  11. H.-G. Rück A Note on Elliptic Curves over Finite Fields Math. of Comp 49(1987), 301–304.

    Article  MATH  Google Scholar 

  12. R.A. Rueppel, Analysis and Design of Stream Ciphers Springer, Berlin, 1986.

    MATH  Google Scholar 

  13. R.A. Rueppel Stream ciphers, Contemporary Cryptology: The Science of Information Integrity (GJ Simmons, ed.), pp. 65–134, IEEE Press New York 1992.

    Google Scholar 

  14. J. H. Silverman, The Arithmetic of Elliptic Curves Springer-Verlag, New York, 1986.

    MATH  Google Scholar 

  15. H. Stichtenoth, Algebraic Function Fields and Codes Springer, Berlin, 1993.

    MATH  Google Scholar 

  16. M.A. Tsfasman and S.G. Vlädut, Algebraic-Geometric Codes Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  17. C. P. Xing, Multi-sequences with almost perfect linear complexity profile and function fields over finite fields, Journal of Complexity, to appear.

    Google Scholar 

  18. C.P. Xing, VJ Kumar and CS Ding Low correlation, large linear span sequences from function fields Preprint, 2000.

    Google Scholar 

  19. C.P. Xing and K.Y. Lam, Sequences with almost perfect linear complexity profiles and curves over finite fields IEEE Trans. Inform. Theory, 45(1999), 1267–1270.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. P. Xing and N. Niederreiter, Applications of algebraic curves to constructions of codes and almost perfect sequences, to appear in Proceedings of the 5th International Conference on Finite Fields and Applications.

    Google Scholar 

  21. C.P. Xing, H. Niederreiter, K.Y. Lam, and C.S. Ding, Constructions of sequences with almost perfect linear complexity profile from curves over finite fields Finite Fields Appl. 5 301–313 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  22. C.P. Xing, KY Lam and ZH Wei A class of explicit perfect multi-sequences In: Advanced in Cryptology-Asiacrypt’99 (KY Lam, E Okamoto, CP Xing, eds.), Lecture Notes in Computer Science Vol. 1716 pp. 299–305 Springer-Verlag Berlin 1999.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this paper

Cite this paper

Xing, C. (2002). Constructions of Sequences from Algebraic Curves over Finite Fields. In: Helleseth, T., Kumar, P.V., Yang, K. (eds) Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0673-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0673-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-529-8

  • Online ISBN: 978-1-4471-0673-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics