Skip to main content

A Genetic Algorithm and Growing Cell Structure Approach to Learning Case Retrieval Structures

  • Chapter
Soft Computing in Case Based Reasoning

Abstract

Designing suitable case retrieval mechanisms in case base reasoning can amount to a significant knowledge engineering task. Time pressures, lack of domain knowledge, and high-dimensional, incomplete, and inconsistent case descriptions often add to the problem. This chapter presents a neural and a genetic learning approach to the automated construction of case retrieval structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.W. Liao, Z. Zhang, C.R. Mount, Similarity Measures for Retrieval in Case-Based Reasoning Systems, Applied Artificial Intelligence, 12, 267–288, 1998.

    Article  Google Scholar 

  2. D. Patterson, W. Dubitzky, S.S. Anand, J.G. Hughes, On the Automation of Case Base Development from large Databases, in Proc. AAAI 1998 Workshop: Case-Based Reasoning Integrations, pp 126–130, US, 1998.

    Google Scholar 

  3. M. Lenz, B. Bartsch-Spörl, H-D. Burkhard, S. Wess (eds), CBR Technology: From Foundations to Applications, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  4. F. Gebhardt, Survey on Structure-Based Case Retrieval, in Knowledge Engineering Review, 12(1), 41–58, 1997.

    Article  Google Scholar 

  5. W. Dubitzky, A. Schuster, D.A. Bell, J.G. Hughes, K. Adamson, How Similar is VERY YOUNG to 43 Years of Age? On the Representation and Comparison of Polymorphic Properties, in Proc. 15th Int. Joint Conf. on Artificial Intelligence, IJCAI-99, Nagoya, Japan, pp 226–231, 1997.

    Google Scholar 

  6. J.L. Kolodner, Case-Based Reasoning, Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  7. R.C. Schank, Dynamic Memory: A Theory of Learning in Computers and People, Cambridge University Press, 1982.

    Google Scholar 

  8. J.L. Kolodner, C.K. Riesbeck, Experience, Memory, and Reasoning, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

    Google Scholar 

  9. M. Lenz, E. Auriol, M. Manago, Chapter 3: Diagnosis and Decision Support, in M. Lenz, B. Bartsch-Spörl, H-D. Burkhard, S. Wess (eds), CBR Technology: From Foundations to Applications, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  10. N.G. Lester, F.G. Wilkie, W. Dubitzky, D.W. Bustard, A Knowledge-Guided Retrieval Framework for Reusable Software Artefacts, in Proc. 17th Annual Association of Management/Int. Association of Management Conf. on Computer Science, San Diego, US, pp 206–211, 1999.

    Google Scholar 

  11. S. Wess, K-D. Althoff, G. Derwand, Improving the Retrieval Step in Case-Based Reasoning, in 1st European Workshop on CBR (EWCBR-93), Otzenhausen, Germany, vol. I, pp 83–88, 1993.

    Google Scholar 

  12. K.J. Hammond, Case-Based Planning: Viewing Planning as a Memory Task, Academic Press Harcourt Brace Jovanovic, New York 1989.

    Google Scholar 

  13. M.J.A. Berry, G. Linoff, Data Mining Techniques for Marketing, Sales, and Customer Support, Wiley, New York, 1997.

    Google Scholar 

  14. T.M. Micheli, Machine Learning, McGraw-Hill, New York, 1997.

    Google Scholar 

  15. A. Aamodt, A Knowledge-Intensive App roach to Problem Solving and Sustained Learning, PhD dissertation, University of Trondheim, Norwegian Institute of Technology, 1991.

    Google Scholar 

  16. C. Bento, E. Costa, A Similarity for Retrieval of Cases Imperfectly Explained, in 1st European Workshop on CBR (EWCBR-93), Otzenhausen, Germany, vol. I, pp 8–13, 1993.

    Google Scholar 

  17. M.T. Keane, B. Smyth, Retrieving Adaptable Cases: The Role of Adaptation Knowledge in Case Retrieval, in 1st European Workshop on CBR (EWCBR-93), Otzenhausen, Germany, vol. I, pp 76–82, 1993.

    Google Scholar 

  18. A. Bonzano, P. Cunninghan, B. Smyth, Using Introspective Learning to Improve Retrieval in CBR: A Case Study in air Traffic Control, in D.B. Leake and E. Plaza (eds), Proc. Case-Based Reasoning: Research and Development, 2nd Int. Conf. on Case-Based Reasoning, Springer, pp 291–302, 1997.

    Google Scholar 

  19. D. Wettschereck, D.W. Aha, T. Mohri, A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms, in D.W. Aha (ed.), Lazy Learning, Kluwer, Dordrecht, pp 273–314, 1997.

    Google Scholar 

  20. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  21. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd edition, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  22. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA, 1992.

    MATH  Google Scholar 

  23. Study Group, European Atherosclerosis Society, Strategies for the Prevention of Coronary Heart Disease: A Policy Statement of the European Atherosclerosis Society, European Heart Journal, 8, 77, 1987.

    Google Scholar 

  24. P. Lopes, R.H. Mitchell, J.A. White, The Relationships Between Respiratory Sinus Arrhythmia and Coronary Heart Disease Risk Factors in Middle-Aged Males, Automedica, 16, 71–76, 1994.

    Google Scholar 

  25. K. Anderson, P. Wilson, P. Odell, W. Kanel, An Updated Coronary Risk Profile: A Statement for Health Professionals, Circulation, 83, 356–361, 1991.

    Google Scholar 

  26. S.M. Weiss, N. Indurkhya, Predictive data Mining: A Practical Guide, Morgan Kaufmann, San Mateo, CA, 1998.

    MATH  Google Scholar 

  27. B. Fritzke, A Self-Organizing Network that Can Follow Non-Stationary Distributions, in Proceedings of International Conference on Artificial Networks (ICANN-97), Laussane, Switzerland, pp 613–618, 1997.

    Google Scholar 

  28. B. Fritzke, Growing Self-Organizing Networks-Why?, in ESANN’96: European Symposium on Artificial Neural Networks, M. Verleysen (ed.), Brussels, pp 61–72, 1996

    Google Scholar 

  29. T. Kohonen, Self-Organizing Maps, Springer, Heidelberg, 1995.

    Google Scholar 

  30. B. Fritzke, Growing Cell Structures: A Self-Organizing Network for Unsupervised an Supervised Learning, Neural Networks, 7, 1441–1460, 1994.

    Article  Google Scholar 

  31. M. Köhle, D. Merkl, Visualizing Similarities in High Dimensional Input Spaces with a Growing and Splitting Neural Network, in Proc. of Int. Conf. on Artificial Neural Networks (ICANN’96), Bochum, Germany, pp 581–586, 1996.

    Google Scholar 

  32. J. Zavrel, Neural Navigation Interfaces for Information Retrieval: Are they More than an Appealing Idea?, Artificial Intelligence Review, 10, 477–504, 1996.

    Article  Google Scholar 

  33. G. Kemeny, J.L. Snell, Finite Markov Chains, Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this chapter

Cite this chapter

Dubitzky, W., Azuaje, F. (2001). A Genetic Algorithm and Growing Cell Structure Approach to Learning Case Retrieval Structures. In: Pal, S.K., Dillon, T.S., Yeung, D.S. (eds) Soft Computing in Case Based Reasoning. Springer, London. https://doi.org/10.1007/978-1-4471-0687-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0687-6_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-262-4

  • Online ISBN: 978-1-4471-0687-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics