Skip to main content

Monotonically Computable Real Numbers

  • Conference paper
Combinatorics, Computability and Logic

Abstract

A real number x is called semi-computable if it is a limit of an increasing or decreasing computable sequence (x n ), n∈ℕ of ratio­nal numbers. In this case, a later member of the sequence is always a better approximation to x in the sense that |xx n | ≥ |xx m |, if nm. As a natural generalization, we call a real number x k-monotone computable (k-mc, for short), for any real number k >0,, if there is a computable sequence (xn),n∈ℕ of rational numbers which converges to x k-monotonically in the sense that k · |x − x n | ≥ |xx m | for any n ≤ m and x is monotonically computable (mc, for short) if it is k-mc for some k >0. Various properties of k-mc real numbers are discussed in this pa­per. Among others we show that a real number is computable if it is k-mc for some k <1; the 1-mc real numbers are just the semi-computable real numbers and the set of all mc real numbers is contained properly in the set of weakly computable real numbers, where x is weakly computable if there are semi-computable real numbers y, z such that x = y + z. Furthermore, we show also an infinite hierarchy of mc real numbers.

Corresponding author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Ambos-Spies, K. Weihrauch and X. Zheng. Weakly Computable Real Numbers. J. of Complexity. 16 (2000), 676–690.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Calude. A characterization of c.e. random reals. CDMTCS Research Report Series 095, March 1999.

    Google Scholar 

  3. C. Calude, P. Hertling, B. Khoussainov, and Y. Wang. Recursive enumerable reals and Chaintin’s 12-number, in STACS’98,pp596–606.

    Google Scholar 

  4. C. Calude and P. Hertling. Computable approximations of reals: An information-theoretic analysis. Fundamenta Informaticae 33 (1998), 105–120.

    MathSciNet  MATH  Google Scholar 

  5. Ker-I Ko. Reducibilities of real numbers, Theoret. Comp. Sci. 31 (1984) 101–123.

    Article  MATH  Google Scholar 

  6. Ker-I Ko. Complexity Theory of Real Functions, Birkhäuser, Berlin, 1991.

    MATH  Google Scholar 

  7. M. Pour-El & J. Richards. Computability in Analysis and Physics. Springer-Verlag, Berlin, Heidelberg, 1989.

    Google Scholar 

  8. H. G. Rice. Recursive real numbers, Proc. Amer. Math. Soc. 5 (1954), 784–791.

    MathSciNet  MATH  Google Scholar 

  9. R. M. Robinson. Review of “R. Peter: `Rekursive Funktionen’, Akad. Kiado. Budapest, 1951”, J. Symb. Logic 16 (1951), 280.

    Article  Google Scholar 

  10. R. Soare. Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, Heidelberg, 1987.

    Google Scholar 

  11. E. Specker. Nicht konstruktive beweisbare Sätze der Analysis, J. Symbolic Logic 14 (1949), 145–158.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. M. Turing. On computable numbers, with an application to the “Entscheidungsproblem”. Proceeding of the London Mathematical Society, 43 (1936), no. 2, 230–265.

    Google Scholar 

  13. K. Weihrauch. Computable Analysis. Texts in Theoretical Computer Science, Springer-Verlage, Heidelberg 2000.

    Google Scholar 

  14. K. Weihrauch & X. Zheng. A finite hierarchy of the recursively enumerable real numbers, MFCS’98 Brno, Czech Republic, August 1998, pp 798–806.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Rettinger, R., Zheng, X., Gengler, R., von Braunmühl, B. (2001). Monotonically Computable Real Numbers. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0717-0_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-526-7

  • Online ISBN: 978-1-4471-0717-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics