Abstract
A real number x is called semi-computable if it is a limit of an increasing or decreasing computable sequence (x n ), n∈ℕ of rational numbers. In this case, a later member of the sequence is always a better approximation to x in the sense that |x − x n | ≥ |x − x m |, if n ≤ m. As a natural generalization, we call a real number x k-monotone computable (k-mc, for short), for any real number k >0,, if there is a computable sequence (xn),n∈ℕ of rational numbers which converges to x k-monotonically in the sense that k · |x − x n | ≥ |x − x m | for any n ≤ m and x is monotonically computable (mc, for short) if it is k-mc for some k >0. Various properties of k-mc real numbers are discussed in this paper. Among others we show that a real number is computable if it is k-mc for some k <1; the 1-mc real numbers are just the semi-computable real numbers and the set of all mc real numbers is contained properly in the set of weakly computable real numbers, where x is weakly computable if there are semi-computable real numbers y, z such that x = y + z. Furthermore, we show also an infinite hierarchy of mc real numbers.
Corresponding author
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
K. Ambos-Spies, K. Weihrauch and X. Zheng. Weakly Computable Real Numbers. J. of Complexity. 16 (2000), 676–690.
C. Calude. A characterization of c.e. random reals. CDMTCS Research Report Series 095, March 1999.
C. Calude, P. Hertling, B. Khoussainov, and Y. Wang. Recursive enumerable reals and Chaintin’s 12-number, in STACS’98,pp596–606.
C. Calude and P. Hertling. Computable approximations of reals: An information-theoretic analysis. Fundamenta Informaticae 33 (1998), 105–120.
Ker-I Ko. Reducibilities of real numbers, Theoret. Comp. Sci. 31 (1984) 101–123.
Ker-I Ko. Complexity Theory of Real Functions, Birkhäuser, Berlin, 1991.
M. Pour-El & J. Richards. Computability in Analysis and Physics. Springer-Verlag, Berlin, Heidelberg, 1989.
H. G. Rice. Recursive real numbers, Proc. Amer. Math. Soc. 5 (1954), 784–791.
R. M. Robinson. Review of “R. Peter: `Rekursive Funktionen’, Akad. Kiado. Budapest, 1951”, J. Symb. Logic 16 (1951), 280.
R. Soare. Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, Heidelberg, 1987.
E. Specker. Nicht konstruktive beweisbare Sätze der Analysis, J. Symbolic Logic 14 (1949), 145–158.
A. M. Turing. On computable numbers, with an application to the “Entscheidungsproblem”. Proceeding of the London Mathematical Society, 43 (1936), no. 2, 230–265.
K. Weihrauch. Computable Analysis. Texts in Theoretical Computer Science, Springer-Verlage, Heidelberg 2000.
K. Weihrauch & X. Zheng. A finite hierarchy of the recursively enumerable real numbers, MFCS’98 Brno, Czech Republic, August 1998, pp 798–806.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag London Limited
About this paper
Cite this paper
Rettinger, R., Zheng, X., Gengler, R., von Braunmühl, B. (2001). Monotonically Computable Real Numbers. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_16
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0717-0_16
Publisher Name: Springer, London
Print ISBN: 978-1-85233-526-7
Online ISBN: 978-1-4471-0717-0
eBook Packages: Springer Book Archive