Skip to main content

Apartness as a Relation Between Subsets

  • Conference paper
Combinatorics, Computability and Logic

Abstract

The notion of apartness has recently shown promise as a means of lifting constructive topology from the restrictive context of metric spaces to more general settings. Starting from the point-subset apartness axiomatised in previous papers, we characterise the constructive meaning of ‘two subsets of a given set lie apart from each other’. Our guiding example is that of an abstract uniform space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beeson, M. J.: Foundations of Constructive Mathematics. Ergebnisse Math. Grenzgeb. Math., 3. Folge, Bd. 6. Springer, Berlin and Heidelberg (1985)

    Google Scholar 

  2. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  3. Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren math. Wiss., Bd. 279. Springer, Berlin and Heidelberg, (1985)

    Google Scholar 

  4. Bridges, D. S.: Constructive mathematics: a foundation for computable analysis. Theoret. Comp. Science, 219 (1999), 95–109

    Article  MathSciNet  MATH  Google Scholar 

  5. Bridges, D., Vîţă, L. S.: Apartness spaces as a framework for constructive topology. Preprint, University of Canterbury, Christchurch, New Zealand, (2000)

    Google Scholar 

  6. Bridges, D., Ishihara, H., Schuster, P., Vîţă, L. S.: Apartness continuity implies uniformly sequential continuity. Preprint, University of Canterbury, Christchurch, New Zealand, (2000)

    Google Scholar 

  7. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Math. Soc. Lect. Note Ser., 97, Cambridge University Press, (1987)

    Google Scholar 

  8. Császár, A.: General Topology. Disquisitiones Math. Hung., 8, Akadémiai Kiadô, Budapest, and Adam Hilger, Bristol, (1978)

    Google Scholar 

  9. Dediu (Vîţă), L. S., Bridges, D. S.: Constructive notes on uniform and locally convex spaces. Proc. Internat. Symposium FCT’99 (Iai, Romania), Springer Lecture Notes in Computer Science, (G. Ciobanu and G. Păun, eds), 1684 (1999) 195–203

    Google Scholar 

  10. Dediu (Vîţă), L. S.: The Constructive Theory of Operator Algebras. D.Phil. Thesis, University of Canterbury, Christchurch, New Zealand, (2000)

    Google Scholar 

  11. Dummett, M.: Elements of Intuitionism. 2nd edition. Oxford Logic Guides, 39, Oxford University Press, (2000)

    Google Scholar 

  12. Ishihara, H., Schuster, P.: A constructive uniform continuity theorem. Preprint, University of Munich, (2000)

    Google Scholar 

  13. Kushner, B. A.: Lectures on Constructive Mathematical Analysis (translated by E. Mendelson from the 1973 Russian ed.). Translations Math. Monographs, 60, Amer. Math. Soc., Providence, RI, (1984)

    Google Scholar 

  14. Naimpally, S. A., Warrack, B. D.: Proximity Spaces. Cambridge Tracts in Math. and Math. Physics, 59, Cambridge University Press, London, (1970)

    Google Scholar 

  15. Richman, F.: Intuitionism as generalization. Philosophia Math., 5 (1990), 124–128

    MathSciNet  MATH  Google Scholar 

  16. Taschner, R.: Entwurf einer konstruktiven Topologie. Osterr. Akad. Wiss. Math.Naturwiss. Kl. Sitzungsber. II, 199 (1990), 161–192

    MathSciNet  MATH  Google Scholar 

  17. Taschner, R.: Lehrgang der konstruktiven Mathematik. Three volumes. Manz and Hölder-Pichler-Tempsky, Wien, ( 1993, 1994, 1995 )

    Google Scholar 

  18. Troelstra, A. S., van Dalen, D.: Constructivism in Mathematics. An Introduction. ( Two volumes.) North Holland, Amsterdam, (1988)

    Google Scholar 

  19. Vîţă, L. S., Bridges, D. S.: A first-order constructive theory of nearness spaces. Preprint, University of Canterbury, Christchurch, New Zealand, (2000)

    Google Scholar 

  20. Weihrauch, K.: Computability. Europ. Assoc. Theor. Comp. Science Monographs, 9 Springer, Berlin and Heidelberg, (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Schuster, P., Vîţă, L., Bridges, D.S. (2001). Apartness as a Relation Between Subsets. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0717-0_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-526-7

  • Online ISBN: 978-1-4471-0717-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics