Abstract
The notion of apartness has recently shown promise as a means of lifting constructive topology from the restrictive context of metric spaces to more general settings. Starting from the point-subset apartness axiomatised in previous papers, we characterise the constructive meaning of ‘two subsets of a given set lie apart from each other’. Our guiding example is that of an abstract uniform space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beeson, M. J.: Foundations of Constructive Mathematics. Ergebnisse Math. Grenzgeb. Math., 3. Folge, Bd. 6. Springer, Berlin and Heidelberg (1985)
Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren math. Wiss., Bd. 279. Springer, Berlin and Heidelberg, (1985)
Bridges, D. S.: Constructive mathematics: a foundation for computable analysis. Theoret. Comp. Science, 219 (1999), 95–109
Bridges, D., Vîţă, L. S.: Apartness spaces as a framework for constructive topology. Preprint, University of Canterbury, Christchurch, New Zealand, (2000)
Bridges, D., Ishihara, H., Schuster, P., Vîţă, L. S.: Apartness continuity implies uniformly sequential continuity. Preprint, University of Canterbury, Christchurch, New Zealand, (2000)
Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Math. Soc. Lect. Note Ser., 97, Cambridge University Press, (1987)
Császár, A.: General Topology. Disquisitiones Math. Hung., 8, Akadémiai Kiadô, Budapest, and Adam Hilger, Bristol, (1978)
Dediu (Vîţă), L. S., Bridges, D. S.: Constructive notes on uniform and locally convex spaces. Proc. Internat. Symposium FCT’99 (Iai, Romania), Springer Lecture Notes in Computer Science, (G. Ciobanu and G. Păun, eds), 1684 (1999) 195–203
Dediu (Vîţă), L. S.: The Constructive Theory of Operator Algebras. D.Phil. Thesis, University of Canterbury, Christchurch, New Zealand, (2000)
Dummett, M.: Elements of Intuitionism. 2nd edition. Oxford Logic Guides, 39, Oxford University Press, (2000)
Ishihara, H., Schuster, P.: A constructive uniform continuity theorem. Preprint, University of Munich, (2000)
Kushner, B. A.: Lectures on Constructive Mathematical Analysis (translated by E. Mendelson from the 1973 Russian ed.). Translations Math. Monographs, 60, Amer. Math. Soc., Providence, RI, (1984)
Naimpally, S. A., Warrack, B. D.: Proximity Spaces. Cambridge Tracts in Math. and Math. Physics, 59, Cambridge University Press, London, (1970)
Richman, F.: Intuitionism as generalization. Philosophia Math., 5 (1990), 124–128
Taschner, R.: Entwurf einer konstruktiven Topologie. Osterr. Akad. Wiss. Math.Naturwiss. Kl. Sitzungsber. II, 199 (1990), 161–192
Taschner, R.: Lehrgang der konstruktiven Mathematik. Three volumes. Manz and Hölder-Pichler-Tempsky, Wien, ( 1993, 1994, 1995 )
Troelstra, A. S., van Dalen, D.: Constructivism in Mathematics. An Introduction. ( Two volumes.) North Holland, Amsterdam, (1988)
Vîţă, L. S., Bridges, D. S.: A first-order constructive theory of nearness spaces. Preprint, University of Canterbury, Christchurch, New Zealand, (2000)
Weihrauch, K.: Computability. Europ. Assoc. Theor. Comp. Science Monographs, 9 Springer, Berlin and Heidelberg, (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag London Limited
About this paper
Cite this paper
Schuster, P., Vîţă, L., Bridges, D.S. (2001). Apartness as a Relation Between Subsets. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_17
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0717-0_17
Publisher Name: Springer, London
Print ISBN: 978-1-85233-526-7
Online ISBN: 978-1-4471-0717-0
eBook Packages: Springer Book Archive