Abstract
We consider and compare greedy algorithms for the lower chromatic number in classic hypergraph coloring and for the upper chromatic number in coloring of hypergraphs in such a way that every edge has at least two vertices of the same color. It is shown that from the algorithmic view point the maximization and minimization of the number of colors have a different nature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C. Berge. Graphs and Hypergraphs. North Holland, 1973.
C. Berge. Graphs. North Holland, 1985.
C. Berge. Hypergraphs: Combinatorics of Finite Sets. North Holland, 1989.
E. Bulgaru, V.I. Voloshin. Mixed interval hypergraphs, Discrete Appl. Math. 77 (1) (1997), 24–41.
G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25 (1961), 71–76.
P. Erdös, A. Hajnal. On chromatic number of graphs and set systems. A.ta Math. Acad. Sci. Hungar. 17 (1966), 61–99.
A. Hajnal, J. Surânyi. Uber die Auflösung von Graphen in vollständige Teilgraphen. Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1 (1958), 113–121.
F. Harary. Graph theory. Addison-Wesley, Reading, MA, 1969.
T.R. Jensen, B. Toft. Graph Coloring Problems. A Wiley-Interscience Publication, New York, 1995.
A.B. Kempe. On the geographical problem of four colors. Amer. J. Math. 2 (1879), 193–200.
D. Kral, J. Kratochvil, A. Proskurowski, H.-J. Voss. Coloring mixed hypertrees. Preprint MATH-AL-8–2000, Technische Universität Dresden, 2000.
S. Lizzio. Greedy algorithm for the upper chromatic number. Tesi di Laurea (M.Sc. Thesis ). Catania University, 1998.
V. Miagkov. R-uniform chordal conformal co-perfect hypergraphs. M.Sc. Thesis, Moldova State University, Chisinâu, 1997.
A. Niculitsa, V. Voloshin. About uniquely colorable mixed hypertrees. Discussiones Mathematicae Graph Theory. 20 (1), (2000) 81–91.
G. Szekeres, H.S. Wilf. An inequality for the chromatic number of a graph. J. Combin. Theory 4 (1968), 1–3.
Zs. Tuza, V.I. Voloshin, Uncolorable mixed hypergraphs, Discrete Applied Mathematics, 99 (2000) 209–227.
V.G. Vizing. Critical graphs with given chromatic class. Metody Diskret. Analiz. 5 (1965), 9–17, (in Russian).
V.I. Voloshin. Properties of triangulated graphs. Issledovanie operatsii i programmirovanie, Chi§inâu, Shinto, 1982, 24–32, (in Russian).
V.I. Voloshin. The mixed hypergraphs. Computer Science Journal of Moldova. 1 (1993), 45–52.
V.I. Voloshin. On the upper chromatic number of a hypergraph. Australasian Journal of Combinatorics 11 (1995), 25–45.
V. Voloshin, H.-J. Voss. Circular Mixed hypergraphs I: colorability and unique colorability. Preprint Inst. of Algebra MATH-AL-3–2000, Technische Universität Dresden, 2000. Congressus Numerantium, to appear.
V. Voloshin, H.-J. Voss. Circular mixed hypergraphs II: lower and upper chromatic numbers. Manuscript.
D.B. West. Introduction to Graph Theory. Prentice Hall, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag London Limited
About this paper
Cite this paper
Voloshin, V. (2001). Greedy Algorithms for the Lower and Upper Chromatic Numbers. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_20
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0717-0_20
Publisher Name: Springer, London
Print ISBN: 978-1-85233-526-7
Online ISBN: 978-1-4471-0717-0
eBook Packages: Springer Book Archive