Abstract
First of all, a disclaimer. I am not a historian. My interest in the development of Recursion Theory is not academic, but cultural. I want to know if and how the basic ideas and methods used in a restricted area of Logic derive from, or at least interact with, a wider mathematical and intellectual experience. I can only offer suggestions, not scholarly arguments, to those who share my interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliography
Abian, S., and Brown, A.B. [ 1961 ] A theorem on partially ordered sets with applications to fixed-point theorems, Can. J. Math. 13 (1961) 78–83.
Banach, S. [ 1922 ] Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math. 3 (1922) 7–33.
Bolzano, B. [1817] Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Wer-then, die ein entgegengesetzes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege, 1817.
Brouwer, L. [ 1911 ] Über Abbildungen von Mannigfaltigkeiten, Math. Ann. 71 (1911/12) 97–115.
Cantor, G. [ 1874 ] Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, J. Math. 77 (1874) 258–262.
Church, A. [ 1933 ] A set of postulates for the foundation of logic (second paper), Ann. Math. 34 (1933) 839–864.
Church, A. [ 1936 ] A note on the Entscheidungsproblem, J. Symb. Log. 1 (1936) 40–41.
Curry, H.B. [ 1942 ] The inconsistency of certain formal logics, J. Symb. Log. 7 (1942) 115–117.
Gödel, K. [ 1931 ] Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monash. Math. Phys. 38 (1931) 173–198.
Hardy, G.H. [1910] Orders of infinity, 1910.
Kleene, S.K. [ 1935 ] A theory of positive integers in formal logic, Am. J. Math. 57 (1935) 153–173, 219–244.
Kleene, S.K. [1936] λ-definability and recursiveness, Duke Math. J. 2 (1936) 340–353.
Kleene, S.K. [ 1938 ] On notations for ordinal numbers, J. Symb. Log. 3 (1938) 150–155.
Kleene, S.K. [1952] Introduction to metamathematics, 1952.
Knaster, B. [ 1928 ] Un théorème sur les fonctions d’ensembles, Ann. Soc. Polon. Math. 6 (1928) 133–134.
Korzybski, A. [1941] Science and sanity, 1941.
Kronecker, L. [ 1881 ] Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen, Monat. Kön. Preuss. Akad. Wiss. Berlin, (1881) 535–600.
Newman, J.R. [1956] The World of Mathematics, 1956.
Odifreddi, P.G. [1989] Classical Recursion Theory, North Holland, 1989 (Second Edition, 1999 ).
Odifreddi, P.G. [1999] Classical Recursion Theory, volume II, North Holland, 1999.
Owings, J.C. [ 1973 ] Diagonalization and the recursion theorem, Notre Dame J. Form. Log. 14 (1973) 95–99.
Peano, G. [ 1888 ] Intégration par séries des équations différentielles linéaires, Math. Ann. 32 (1888) 450–456.
Peano, G. [ 1891 ] Sul concetto di numero, Rivista di Matematica, 1 (1891) 87–102 and 256–267.
Petruso, K.M. [ 1985 ] Additive progressions in prehistoric mathematics: a conjecture, Hist. Math. 12 (1985) 101–106.
Preziosi, D. [1983] Minoan Architectural Design, 1983.
Rosser, B.J. [ 1936 ] Extensions of some theorems of Gödel and Church, J. Symb. Log. 1 (1936) 87–91.
Rouse Ball, W.W. [1905] Mathematical Recreations and Essays, 1905.
Royce, J. [1899] The world and the individual, 1899.
Russell, B. [1903] The principles of mathematics, 1903.
Shashkin, Y. [1991] Fixed Points, American Mathematical Society, 1991.
Singh, P. [ 1985 ] The socalled Fibonacci numbers in Ancient and Medieval India, Hist. Math. 12 (1985) 229–244.
Skewes, S. [ 1933 ] On the difference π(x) — li(x), J. Math. Soc. 8 (1933) 277–283.
Tarski, A. [ 1936 ] Der Wahrheitsbegriff in der formalisierten Sprachen, Studia Phil. 1 (1936) 261–405.
Tarski, A. [ 1955 ] A lattice-theoretical fixed-point theorem and its applications, Pac. J. Math. 5 (1955) 285–309.
Wittgenstein, L. [ 1921 ] Logisch-philosophische Abhandlung, Ann. Naturphil. 14 (1921) 185262.
Yablo, S. [ 1985 ] Truth and reflection, J. Phil. Log. 14 (1985) 297–349.
Yablo, S. [ 1993 ] Paradox without self-reference, Analysis 53 (1993) 251–252.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag London Limited
About this paper
Cite this paper
Odifreddi, P. (2001). Recursive Functions: An Archeological Look. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_3
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0717-0_3
Publisher Name: Springer, London
Print ISBN: 978-1-85233-526-7
Online ISBN: 978-1-4471-0717-0
eBook Packages: Springer Book Archive