Skip to main content

Recursive Functions: An Archeological Look

  • Conference paper
Combinatorics, Computability and Logic

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

  • 198 Accesses

Abstract

First of all, a disclaimer. I am not a historian. My interest in the development of Recursion Theory is not academic, but cultural. I want to know if and how the basic ideas and methods used in a restricted area of Logic derive from, or at least interact with, a wider mathematical and intellectual experience. I can only offer suggestions, not scholarly arguments, to those who share my interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Abian, S., and Brown, A.B. [ 1961 ] A theorem on partially ordered sets with applications to fixed-point theorems, Can. J. Math. 13 (1961) 78–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Banach, S. [ 1922 ] Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math. 3 (1922) 7–33.

    Google Scholar 

  • Bolzano, B. [1817] Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Wer-then, die ein entgegengesetzes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege, 1817.

    Google Scholar 

  • Brouwer, L. [ 1911 ] Über Abbildungen von Mannigfaltigkeiten, Math. Ann. 71 (1911/12) 97–115.

    Article  MathSciNet  Google Scholar 

  • Cantor, G. [ 1874 ] Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, J. Math. 77 (1874) 258–262.

    Google Scholar 

  • Church, A. [ 1933 ] A set of postulates for the foundation of logic (second paper), Ann. Math. 34 (1933) 839–864.

    Article  MathSciNet  MATH  Google Scholar 

  • Church, A. [ 1936 ] A note on the Entscheidungsproblem, J. Symb. Log. 1 (1936) 40–41.

    Article  MATH  Google Scholar 

  • Curry, H.B. [ 1942 ] The inconsistency of certain formal logics, J. Symb. Log. 7 (1942) 115–117.

    Article  MathSciNet  MATH  Google Scholar 

  • Gödel, K. [ 1931 ] Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monash. Math. Phys. 38 (1931) 173–198.

    Article  Google Scholar 

  • Hardy, G.H. [1910] Orders of infinity, 1910.

    MATH  Google Scholar 

  • Kleene, S.K. [ 1935 ] A theory of positive integers in formal logic, Am. J. Math. 57 (1935) 153–173, 219–244.

    Google Scholar 

  • Kleene, S.K. [1936] λ-definability and recursiveness, Duke Math. J. 2 (1936) 340–353.

    Article  MathSciNet  Google Scholar 

  • Kleene, S.K. [ 1938 ] On notations for ordinal numbers, J. Symb. Log. 3 (1938) 150–155.

    Article  MATH  Google Scholar 

  • Kleene, S.K. [1952] Introduction to metamathematics, 1952.

    MATH  Google Scholar 

  • Knaster, B. [ 1928 ] Un théorème sur les fonctions d’ensembles, Ann. Soc. Polon. Math. 6 (1928) 133–134.

    Google Scholar 

  • Korzybski, A. [1941] Science and sanity, 1941.

    Google Scholar 

  • Kronecker, L. [ 1881 ] Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen, Monat. Kön. Preuss. Akad. Wiss. Berlin, (1881) 535–600.

    Google Scholar 

  • Newman, J.R. [1956] The World of Mathematics, 1956.

    MATH  Google Scholar 

  • Odifreddi, P.G. [1989] Classical Recursion Theory, North Holland, 1989 (Second Edition, 1999 ).

    MATH  Google Scholar 

  • Odifreddi, P.G. [1999] Classical Recursion Theory, volume II, North Holland, 1999.

    Google Scholar 

  • Owings, J.C. [ 1973 ] Diagonalization and the recursion theorem, Notre Dame J. Form. Log. 14 (1973) 95–99.

    Article  MathSciNet  Google Scholar 

  • Peano, G. [ 1888 ] Intégration par séries des équations différentielles linéaires, Math. Ann. 32 (1888) 450–456.

    Article  MathSciNet  Google Scholar 

  • Peano, G. [ 1891 ] Sul concetto di numero, Rivista di Matematica, 1 (1891) 87–102 and 256–267.

    Google Scholar 

  • Petruso, K.M. [ 1985 ] Additive progressions in prehistoric mathematics: a conjecture, Hist. Math. 12 (1985) 101–106.

    Article  MathSciNet  MATH  Google Scholar 

  • Preziosi, D. [1983] Minoan Architectural Design, 1983.

    Book  Google Scholar 

  • Rosser, B.J. [ 1936 ] Extensions of some theorems of Gödel and Church, J. Symb. Log. 1 (1936) 87–91.

    Article  MATH  Google Scholar 

  • Rouse Ball, W.W. [1905] Mathematical Recreations and Essays, 1905.

    MATH  Google Scholar 

  • Royce, J. [1899] The world and the individual, 1899.

    Google Scholar 

  • Russell, B. [1903] The principles of mathematics, 1903.

    MATH  Google Scholar 

  • Shashkin, Y. [1991] Fixed Points, American Mathematical Society, 1991.

    MATH  Google Scholar 

  • Singh, P. [ 1985 ] The socalled Fibonacci numbers in Ancient and Medieval India, Hist. Math. 12 (1985) 229–244.

    Article  MATH  Google Scholar 

  • Skewes, S. [ 1933 ] On the difference π(x) — li(x), J. Math. Soc. 8 (1933) 277–283.

    Google Scholar 

  • Tarski, A. [ 1936 ] Der Wahrheitsbegriff in der formalisierten Sprachen, Studia Phil. 1 (1936) 261–405.

    Google Scholar 

  • Tarski, A. [ 1955 ] A lattice-theoretical fixed-point theorem and its applications, Pac. J. Math. 5 (1955) 285–309.

    MathSciNet  MATH  Google Scholar 

  • Wittgenstein, L. [ 1921 ] Logisch-philosophische Abhandlung, Ann. Naturphil. 14 (1921) 185262.

    Google Scholar 

  • Yablo, S. [ 1985 ] Truth and reflection, J. Phil. Log. 14 (1985) 297–349.

    MathSciNet  MATH  Google Scholar 

  • Yablo, S. [ 1993 ] Paradox without self-reference, Analysis 53 (1993) 251–252.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Odifreddi, P. (2001). Recursive Functions: An Archeological Look. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0717-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-526-7

  • Online ISBN: 978-1-4471-0717-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics