Abstract
An addition chain for a positive integer n is a sequence of positive integers 1 = a 0 < a 1 <… < a r = n, such that for each i ≥ 1, a i = a j + a k for some 0 ≤ j, k < i. The smallest length r for which an addition chain for n exists is denoted by ℓ(n). Scholz conjectured that ℓ(2n − 1) ≤ n + ℓ(n) − 1. Aiello and Subbarao proposed a stronger conjecture which is “for each integer n ≥ 1, there exists an addition chain for 2n − 1 with length equals n+ℓ(n) − 1.” This paper improves Brauer’s result for the Scholz conjecture. We propose a special class of addition chain called M B-chain, we conjecture that it is equivalent to ℓ ° -chain and we prove that this conjecture is true for integers n ≤ 8 × 104. Also, we prove that the Scholz and Aiello-Subbarao conjectures are true for integers n ≤ 8 × 104.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
W. Aiello and M. Subbarao: A conjecture in addition chains related to Scholz’s conjecture. Math.Comp. 6 (1993), 17–23.
F. Bergeron, J. Berstel, and S.Brlek: Efficient computation of addition chains. J. de Théor.Nombres Bordeaux 6 (1994), 21–38.
A.T. Brauer: On addition chains. Bull.Amer.Math.Soc. 45 (1939), 637–739.
A. Gioia, M. Subbarao and M. Sugunamma: The Scholz—Brauer problem in addition chains. Duke Math. J. 29 (1962),481–487.
W. Hansen: Zum Scholz—Brauerschen problem. J. Reine Angew. Math. 202 (1959), 129–136.
H. M. Bahig: On the algorithms of computational number theory and their applications. Master Thesis, Dept. of Math., Faculty of Science, Ain Shams University, Cairo, Egypt. 1998.
D. E. Knuth: The Art of Computer Programming: Seminumerical Algorithms. Vol.2, 3rd ed., Addison-Wesley, Reading MA, 1997.
A. Scholz: Jahresbericht. Deutsche Mathematiker-Vereingung. 47 (1937), 41–42.
M. Subbarao: Addition chains-some results and problems. NATO Adv.Sc.Inst.Ser.C Math.Phys.Sci. 265 Kluwer Acad.Publ. (1989), 555–574.
E.G. Thurber: Addition chains-an erratic sequence. Discrete Math. 122 (1993), 287–305.
E.G. Thurber: Efficient generation of minimal length addition chains. SAIM J. Computing 28 (1999), 1247–1263.
W.R. Utz: A note of the Scholz-Brauer problem in addition chains. Proc. Amer. Math. Soc. 4 (1953), 462–463.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag London Limited
About this paper
Cite this paper
Bahig, H.M., El-Zahar, M.H., Nakamula, K. (2001). Some Results for Some Conjectures in Addition Chains. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_5
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0717-0_5
Publisher Name: Springer, London
Print ISBN: 978-1-85233-526-7
Online ISBN: 978-1-4471-0717-0
eBook Packages: Springer Book Archive