Abstract
The classical statement of Dini’s Theorem on the uniform convergence of increasing sequences of continuous functions cannot be proved constructively, since it fails in the recursive model. Nevertheless, a basic constructive version of the theorem is proved, as is a version in which the uniform convergence of the sequence of functions is reduced to the convergence of some subsequence of a particular sequence of real numbers. After some additional reductions and conjectures related to Dini’s Theorem, the paper ends by showing that a particular version of the theorem implies a weak Heine-Borel-Lebesgue Theorem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beeson, M.J.: Principles of continuous choice and continuity of functions in formal systems for constructive mathematics, Ann. Math. Logic 12, (1977) 249–322
Bishop E., Bridges, D.: Constructive Analysis, Grundlehren der math. Wissenschaften 279, Springer-Verlag, Heidelberg (1985)
Bridges D., Demuth, O.: On the Lebesgue measurability of continuous functions in constructive analysis, Bull. Amer. Math. Soc. 24 (2), (1991) 259–276
Bridges,D., Ishihara, H., Schuster, P.: Compactness and Continuity Revisited, preprint, University of Canterbury, (1999)
Bridges, D., Ishihara, H., Schuster, P.: Sequential Compactness in Constructive Analysis, Osterr. Akad. Wiss. Math.—Natur. Kl. Sitzungsber. II. 208 (1999) 159–163
Bridges, D., Richman, F.: Varieties of Constructive Mathematics, London Math. Soc. Lecture Notes 97, Cambridge Univ Press (1987)
Constable R. L. et al.: Implementing Mathematics with the Nuprl Proof Development System, Prentice—Hall, Englewood Cliffs, New Jersey (1986)
Dieudonné, J.: Foundations of Modern Analysis, Academic Press, New York (1960)
Hayashi, S, Nakano, H.: PX: A Computational Logic, MIT Press, Cambridge MA (1988)
Ishihara, H.: Continuity and nondiscontinuity in constructive mathematics, J. Symb. Logic 56 (4), (1991) 1349–1354
Kohlenbach, U.: Relative constructivity’, J. Symb. Logic 63, (1998) 1218–1238
Kohlenbach, U.: The use of a logical principle of uniform boundedness in analysis. Logic and Foundations of Mathematics (Cantini, Casari, Minari eds. ), Kluwer (1999) 93–106
Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part, Logic Colloquium 1973 (H.E. Rose, J.C. Shepherdson eds.), North-Holland, Amsterdam, (1975) 73–118
Myhill, J.: Some properties of intuitionistic Zermelo—Fraenkel set theory, Cambridge Summer School in Mathematical Logic (A. Mathias, H. Rogers eds.), Lecture Notes in Mathematics 337, Springer-Verlag, Berlin, (1973) 206–231
Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis, J. Symbolic Logic 14, (1949) 145–158
Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction (two volumes), North Holland, Amsterdam (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag London Limited
About this paper
Cite this paper
Bridges, D.S. (2001). Dini’s Theorem: A Constructive Case Study. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_7
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0717-0_7
Publisher Name: Springer, London
Print ISBN: 978-1-85233-526-7
Online ISBN: 978-1-4471-0717-0
eBook Packages: Springer Book Archive