Abstract
We extend BCK algebras to pseudo-BCK algebras, as MV algebras and BL algebras were extended to pseudo-MV algebras and pseudo-BL algebras, respectively. We make the connection with pseudo-MV algebras and with pseudo-BL algebras.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467–490.
R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer, Volume 7, 2000.
R. Cignoli, A. Torrens, An algebraic analysis of product logic, Centre de Recerca Matematica, Barcelona, Preprint No. 363, 1997.
A. Di Nola, G. Georgescu, A. lorgulescu, Pseudo-BL algebras: Part I, Mult. Val. Logic,to appear.
A. Di Nola, G. Georgescu, A. lorgulescu, Pseudo-BL algebras: Part II, Mult. Val. Logic,to appear.
A. Dvurečnskij, Commutativity of atomic pseudo MV-algebras, manuscript.
A. Dvurel;enskij, Pseudo MV-algebras are intervals in l-groups, submitted.
P. Flondor, G. Georgescu, A. lorgulescu, Pseudo-t-norms and pseudo-BL algebras, Soft Computing,to appear.
G. Georgescu, A. lorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, The Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, Romania, May (1999), 961–968.
G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Mult. Val. Logic (A special issue dedicated to the memory of Cr.C. Moisil), 6 1–2 (2001), 95–135.
G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February (2000), 90–92.
P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996).
P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht, 1998.
P. Hájek, Basic fuzzy logic and BL-algebras, Soft computing, 2 (1998), 124–128.
P. Hájek, L. Godo, F. Esteva, A complete many-valued logic with product-conjunction, Arch. Math. Logic, 35 (1996), 191–208.
Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19–22.
K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23 1 (1978), 1–26.
Gr.C. Moisil, Essais sur les Logiques Non-chryssippiennes, Bucarest, 1972.
D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica, 31 6 (1986), 889–894.
D. Mundici, Interpretation of AF C’-algebras in Lukasiewicz sentential calculus, J. Funct. Anal., 65 (1986), 15–63.
A.N. Prior, Formal Logic, Oxford, 2nd ed. 1962.
E. Turunen, S. Sessa, Local BL-algebras, Mult. Val. Logic (A special issue dedicated to the memory of Gr.C. Moisil), 6 1–2 (2001), 229–250.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2001 Springer-Verlag London Limited
About this paper
Cite this paper
Georgescu, G., Iorgulescu, A. (2001). Pseudo-BCK Algebras: An Extension of BCK Algebras. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_9
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0717-0_9
Publisher Name: Springer, London
Print ISBN: 978-1-85233-526-7
Online ISBN: 978-1-4471-0717-0
eBook Packages: Springer Book Archive