


Enhancing UML expressivity towards automatic code generation

Pais, A.P .V ., Oliveira, C.E. T.
NCE -UFRJ -Universidade Federnl do Rio de Janeiro

email: carlo@uftj.br
Abstract. UML has turned out to be a great tool to exchange ideas among designers from abstraction to
detailed design. When it comes to machine interpretation. UML description lacks fonnalism, coverage and
detail to produce a fully fleshed informaúon system. Extensibility and genericity aIready built-in in the
language can be exploited to cater for its deficiencies. UML diagrams can be refined and reengineered to
cover unattended areas and rnissing information necessary for automatic system generation. GUI design,
control logic and persistency can be tracked from robustness analysis diagrams down to generation of
extended state, sequence, class and object diagrams. These diagrams are enhanced with new stereotypes
and tags to enable machine generation of interchangeable UI paradigms, use case controllers and
deployment of server entities. This enhanced UML concept is being tested in the development of a real
large system using a custornized set of scripts in a CASE tool.

1 Introduction

1.1 High levei abstraction x implementation

Design leveI modeling is an abstract specification to guide implementation. Capturing the ideas from analysis
leveI. it introduces refined detailing. targeting a particular implementation. Refinements narrow down
development. pinpointing an elected course from a universe of possibilities. A high leveI of abstraction is
applied to design modeling to keep light the burden of developers, and to limit the losses associated to
unavoidable necessity of redesign.
Design abstraction presumes hidden information. based upon a preconceived paradigm, supposed to be a
commona1ity of universa1 knowledge. However, this assumption can detract the stage of acculturation attained
by the local developers community. Semantics of the same abstract description conveyed by distinct
programmers may not crystallize to the same implementation as intended by the designer .
Insufficient information. both stated on abstract description and instilled in developers. leads to widen the gap
between project and implementation. Implementers are expected to fill the bulk of missing information. which
may stem ftom their individua1 point of view concerning the given description. Moreover. due to terse
statements on specification. implementation may lack from requirements abstracted from design logic. As an
unfortunate consequence. implementation preferences that might be present at early analysis stages may get
lost down the development stream. Subjectiveness still can be handled by appropriate training of involved
developers. but can impose insunnountable obstacles to automatical interpretation of design data.

1.2 Extending Uw..

Taming UML [I] to automatization involves exploiting its extensibility and advancing towards refinement and
reinterpretation its specifications. Extensibility is already provided in UML by judicious use of tags and
stereotypes. Refinements can be brought forward filling in most available attribute fields and recursing down
into finer grain specifications. Reengineering stems from the fact that UML is a tool and not a modeling
paradlgm. From thlS, tollows that many diagrams can be used in different way than originally proposed.
Reengineering of semantics can be applied. reusing a diagram paradigm to specify details missing in existing

representations.
UML is defined in extensible way. so that new specifications can be covered until a new release can
effectivate them. Stereotypes are used in this proposal to narrow the meaning of otherwise generic elements,
helping scanning a1gorithms to generate appropriate code. Aspects like transactional contexts and access
scopes can be specified with customized tags.
Sequence diagrams [2] can exemplify the use of refinement for accurate specification. They picture a coarse
idea of object interaction. with hints about branches and loops. Operation in between message issues is
completely abstracted from this diagram. Refined diagrams can be introduced to depict happenings
overlooked by a particular diagram abstraction. Since messages trigger state changes on the destination object,
a state diagram [2] can be associated to each message. detailing operation development, including branches
and loops. The same applies to the state diagram. where interaction between objects is weakly represented by



outgoing actions. Sequence diagrarns can be associated with transitions, revealing deep object interaction.
This recursion can go onwards until sufficient detail is gathered to produce an unambiguous specification.
Semantic tracking to design intention usually transcends the resources offered by cursory interpretation of
avallable UML diagrams. Amending this shortcoming, we can resort to reengineer the sernantic representalion
of existing diagrarns to rnatch the desired meaning. Illustration can be given in the refinement of object
diagrarns [2]. Entity role in use case design [3] entangles the rnapping of user intervention on dornain objects.
This subsumes a correlation between entity properties and user interface. At this point we can expand an
object diagram to represent each entity property as standalone instance. The next step is to associate each
property to a corresponding visual component representing it in a view-model paradigm. Reinterpreting this
diagram we can build a GUI prototype by arranging and nesting visual components instances in a relative
positioning layout. On the previous example of state/sequence recursion. refinement can be carried down to
statement leveI specification. A hierarchical document model tree can represent statements in a method
specification. A reengineered state diagram can represent this tree by nesting its levels in composite states and
sibling nodes as a chain of state transitions.

1.3 Contract, aspects, metaprogramming

Exponential grow of complexity in information system is pushing abstraction to spiraling higher levels. Static
representation offered by UML is falling short to the abstraction needs of embracing architectures devised to
take specification pain out of the hands of designers. Design pattems [4]. aspect programming [5] and contract
frameworks [6] are superimposed layers of abstraction escaping further from UML representation realm. As
an example. a visitor pattem [4] dynamically encompasses methods for each descendant of the visited root
class. Although we can represent a static picture for a predefined set of descendants. the architectural
semantics are not captured. Aspect programming is at large. embedded in enterprise application servers.
System designers are alleviated from extrinsic constraints to their business logic and UML fits them well.
However, server designers are faced with the challenge of representing a system that generates new classes
defined by user specifications.
Ab~tracllon extrapolates over lO metaprogramming [7J and evolving software in genetic programming l8J.
Since abstraction tendency is getting higher. a movement towards finer grain representation appears as
traveling backwards on the technology stream. The answer is to retrofit abstraction tools into the process of
capturing design intention. This paper describes a set of representations that can be extracted from high-level
representation and fed back to designer interaction. Details are inferred from a rnatch of high-level statements
against features of a generic architecture. The high leveI abstraction is a reengineered robustness diagram [3]
that is superimposed to an architecture based on a computer assembly metaphor. Subsequent refined diagrarns
are automatically extracted with simple heuristics scanning the robustness analysis. The whole range of
diagrarns is capable of expressing sufficient details passive to automatic code generation

2 Descrlption

2.1 Robustness Diagram

The robustness diagram is a result of the robustness analysis [3]. introduced by Ivar Jacobson in 1991. This
concept involves the analysis of a use case description and the discovery of the initial classes that participate
in the use case. These elements are classified in three main categories: user interface elements. entities and
controls.
User interface elements are those used to communicate with the user that interacts with the system. Entities are
objects that belong to the application domain. and are the result from the domain analysis [2]. These classes
represent all the information and concepts manipulated by the application. Control elements establish the
communication between the user interface and the entities.
The robustness diagram is a graphical representation of a use case script. The same information contained in
an use case scnpt musl be obtained from the corresponding robustness diagram. By reading both parts. the
user can have a precise understanding on how the system will work. The robustness diagram shows how the
classes interact with each other during the execution of each one of the steps described in the use case.
The robustness diagram, like any other diagram, can be seen as an expression of ideas using a language built
on top of a set of symbols and formation rules. Its simplicity eases its construction and understanding, but



sometimes it can not express a11 the meaning contained in an use case. This work proposes a new set of
syrnbols and rules to tum it into a more complete language. Therefore, the creation of new stereotypes and
association rules for the robustness diagram makes it more meaningful, increasing its capacity to represent
with syrnbols the ideas expressed in an use case script.
The conception of the robustness diagram is idea1 for modeling systerns that implement the MVC architecture
[9]. The model is responsible for storing a11 the information about the current state of the application. The
view deterrninates the visua1 representation of the information contained in the model. The control is
responsible for behavior, stating how and when the application must react to user input. Each one of these
parts is represented by one of the categories in a robustness diagram: entities, user interface elements and
controls. Consequently, there are three symbols that represent these categories: entity, boundary and control
[2]. The introduction of new syrnbols requires a new architecture to bring a context for then.
In other words, these stereotypes extema1ize the MVC architecture in a simple way. The description contained
in a use case can easily overshadow the expressivity provided by the three basic stereotypes. To obtain a
model closer to natural language, we need to develop a more detailed architecture. This architecture must
reflect the planner' s intention of building a flexible, efficient and consistent system. The elements of this
architecture are then represented by new stereotypes that can capture with more precision use case details like
events, decisions, iterations and exceptions.

2.1.1 StuDt ar(:hit~ture

The Stunt architecture is based on the proxy design pattem [4], where a set of objects impersonates the rea1
entities, their properties and mutual behavior. The element names derive from a computer assembly metaphor,
denoting how the parts fit together. This metaphor comprises of a Rack where there are some Slots. Plugged in
these Slots are Boards fit with some Chips. These elements in this context have a very specific role in the
MVC paradigm, leading to the creation of stereotypes that corresponds to some of them.
RackStunt represents the use case. It is the use case controller and has a state machine associated to it. Each
state corresponds to a SlotStunt object. When a state transition occurs the user notices this in the interface
because, normally, this transition results in changing the screen. The SlotStunt is the element responsible for
showing user screens. BoardStunt objects represent entities, which participate in the use case. Some attributes
of an Entity are usua1ly represented in the user interface as read only forrns or as editable forrns. ChipStunts
correspond to these attributes graphic representation, and are aggregated by the corresponding BoardStunt.

2.1.2 Stereotypes

The origina1 Robustness Diagram has three stereotypes: boundary, control and entity, that corresponds
respectively to: interface elements, control elements and entities. This work proposes to add the following
stereotypes: rack, slot, board, guard and boundary action that can be understood as specia1ization of the

original stereotypes.
&~",
~;

boundary control entity

Figure I -The origiDal MVC stereotypes

I~I ~
~ ~

rack board boundary actlon exceptlon exlt guard slot

Figure 2 -The exteDded "StuDt" stereotypes

Boundary action is a visua1 element that represents a user action that is able to change the system state. For
instance, a conf1rnJation button is a boundary action. When this button is clicked, the form data is checked and
a new screen is displayed to the user. Besides, a boundary can aggregate one or more boundary action.
Rack, slot and board come from the Stunt architecture, corresponding respectively to RackStunt, SlotStunt and
BoardStunt. They represent specia1ized control elements with roles deterrnined by Stunt architecture.



Rack represents the use case. Slot is responsible for displaying the corresponding screen when it is the current
state. Board is responsible for making the entity available to user interaction, by saving and retrieving the
entity data.
Guard is a control element that indicates a decision. It corresponds to the evaluation of a condition, which may
be true, or false. So it is associated to two control elements that represents the "true" and "false" paths.
The use of all these stereotypes in the Robustness Diagram showed that the modeling process of some use
cases needed two other stereotypes: exit and exception. They ease the understanding of the use case, and offer
some details that help the automatic generation of diagrams and codes.
Exit is not a system object; it only indicates the end of the use case, its exit. It helps the designer to view the
use case execution flow, showing actions that lead to the end of the use case. Exception represents a exception
state, determined by the developer when a business rule is not respected.

2.1.3 Association rules

The creation of new stereotypes for the robustness diagram suggests the creation of new rules, which
guarantees the MVC architecture concepts, and, more specifically, the Stunt architecture concepts. This keeps
the diagram contents in conforrnity to Stunt architecture, allowing the automatic generation of the correct
code.
There are some rules that have fundamental importance in the construction of the robustness diagram. These
rules are briefly described and discussed afterwards.
There is only one Rack on the robustness diagram, once that it represents the use case itself. This Rack must
be connected to the slot corresponding to the initial state of the use case. This helps to identify the first use
case screen, serving as the starting point for scanning the whole diagram.
The Slot must be attached to a boundary , identifying which screen the slot has the responsibility to show,
when it is the current state of the application.
The board must be connected to only one entity. It is only necessary when attributes of this entity are shown in
the visual interface.
The boundary action can only invoke elements that fit in the category of control. This follows from the MVC
architecture concepts, which determines that the view must send the user events to the application control.

~~ ~ -~ -~
~~ ~ /~ /u

ReglsterSçreen Ok8ut1on regIlIerCultomer Customer

Figure 3 -MVC sample Robustness Diagram

~ ~ ~ ~ c~ , ; ",;~ ""iy ", ',~ "n

Reglsf~1Mn ~ngCUsI- 8oadCUsfonI8r CUsfomer

r /
~ ---'-~
r(:)7 ~O

Ok8u1ton reglsl8rCustanar

Figure 4- Corresponding stunt diagram

2.2 Automatic diagram generation

The Robustness Diagram is the bridge between the scrip4 the use case and all other modeling diagrams. From
the interpretation of its elements and its associations, it is possible to extract inforrnation that will be detailed
by the generation of a set of logical diagrams. Since there are well-defined rules to these diagrams, it is settled
a relation between the elements of different diagrams, making automatic diagram generation possible, and
assuring the consistency between them during the modeling process.
By interpreting Robustness Diagrams, it is possible to automatically generate State Diagrams, Sequence
Diagrams and Class Diagrams. Furthermore, it is possible to generate Screen Diagrams, which are extensions
introduced by this modeling process.



~ EE '.--7~ ;. ,yt~~ ~ ~ ""
;t;

WndowA , ~ ~ A bOC8t! enfIty

r ~ e" ~ ~.~' ,:\c~ ;. ,~
UHCC8e ' ,",

~ akl deci.aI .xil

C~81

~ .~

e ,. ~

, B

W..dowB ak2

Figure 5- Sample stunt diagram used for automatic generation

2.3 Screen diagram

The user interface is an important feature in the development of successful Information Systerns, although
UML barely encourages it. So, to b"eat this deficiency, the Screen Diagram [2] was added to the modeling
process. In fact, the Screen Diagram is the reinterpretation of the Object Diagram. It contains only the visual
elements set into user interface, organized as they will be presented to the user. The Screen Diagrams reflects
the System visual interface.
The objective of the Screen Diagram is to describe the user interface abstt"actly, since the System may be
implemented in any language. The diagram's elements correspond to XUL [10] elements. XUL is a user

interface description language.
The Screen Diagram is automatically generated from the Robustness Diagram's interpretation. The analysis of

elements such as boundary , boundary action, and its aggregation, indicates the use case screens and its content
such as buttons, menus or any other visual element.

There are other Robustness Diagrarns' elements that can be shown by the visual interface. Entities can be
presented, usually, as forrns. A new record, for instance, can be inserted in the database after the user has filled
in a form. Entities have a set of attributes, and a subset of these attributes may be shown by the user interface.
These attributes, defined in the diagram, correspond to ChipStunt objects and may be labeled by a set of
information, such as: identification of its screen and its XUL element type. An entity representing a employee,
for instance, has an attribute called Narne. An edit form may show this attribute as an input text field. On the
other hand, the screen that COnflffi1S the edition may present the same information as a label.

UseC~: wndow

lUseCaseStock : Stack

~- .

~â<1:
,1

Figure 6 -Screen diagram generated automaticaUy

2.4 Connection diagram

The connection diagram, proposed in this work, contemplates the mapping between the entity attributes and
visual elements. This diagram defines a relationship between ChipStunt and an XUL type, rnarking connection

between siots and boards. A slot is represented as a set of alI XUL elements that can be presented in the user
interface corresponding to the slot. A board is represented as a set of attributes that belong to an entity
corresponded to this slot. Each element of a slot is bound to one or more elements of a board.
ChipStunts represent each attribute of an entity .The type of the XUL element related to the slot defines how
the attribute will be represented in the user interface and corresponds to a graphic element, representing the



attribute view. The ChipStunt represents the model to this view. It has the responsibility of store the
inforrnation presented by the corresponding graphic element.
The connection diagrarn facilitates the process of defining relationships between attributes and visual
elements. This diagrarn can be automatically created from the robustness diagrarn, inspecting the way that
slots and boards are added to the new diagrarn. From this point on, is the designer responsibility to add
elements to the slots and establishing the required connections. Once the connection diagram is done, it can be
interpreted, associating the attribute tags to the boards in the robustness diagrarn.

2.5 Class Diagram

The elements defined in the robustness diagrarn can be translated into classes or methods. This depends on the
designer interpretation. The automatic generation of the class diagrarn is based in some rules applied to the
robusbless diagrarn, which indicate how a element ranks as class or method. Once the elements classification
is done, the ru1es define the class to which each method belongs.
Elements in the robusbless diagrarn can be divided in three rnain classes: model, view and control. Model and
view elements are likely to be defined as classes. Control elements, however, are not so easy to classify.
New stereotypes allow a better understanding of the control elements behavior, following the Stunt
architecture. So racks, slots and board elements can be seen as specializations of the base classes RackStunt,
SlotStunt and BoardStunt The rernaining control elements are classified as methods.
Some simple rules were established to define the association of methods to classes. Elements identified as
methods corresponding to boards are translated as BoardStunts methods. Elements related to an entity are
defined as BoardStunt methods corresponding to the board bound to the entity .If there is no board related to
the entity, the methods will belong to the class that represents this entity. The rernaining elements will turn into
RackStunt methods corresponding to the rack, which is unique in the robustness diagrarn.
From the classes that represent use case entities, it is possible to automatically generate the deployment to the
persistence for EJB containers [11]. This deployrnent is a XML [12] file that configures the object persistence.
In order to do that, it is necessary to detail the entity attributes, as for instance, the write and read access.
The entity attribute can be better specified in the robusbless diagrarn by adding tags. These tags can be read-
only, write-only, or finder. The finder label defines if the attribute value can be used as a key to query one or
rnore elements in a collection. So, for example, if attribute name of a student entity is defined as a finder, it
can result in the creation of a findByNarne method that query students based in their names. The other labels
specify how the corresponding attribute can be accessed, which can be read only, write only or read and write.
The automatically generation of the persistence files involves only the recognition on the entities represented
in the different use cases. The following step is to evaluate the associations between entities and anribute tags.
The information collected in the diagrarns is enough to completely generate the persistence deployment for the

system.

2.6 State Diagram

The state diagram generation is possible through the interpretation of the relationship between some of the
elements in the robustness diagram. The identification of these states is a good starting point to this
interpretation. Once it is done, it is necessary to identify, in the robustness diagram, how the transition
between states happen, as well as, the events that cause them. Finally, a prelirninary state diagram that includes
the inforrnation represented in the robustness diagram is created. However, this diagram still has to be refined
by the designer .
The state of the application can be related to an element in the robustness diagram that will be translated in the
state diagram. From the user point of view, the better candidate to a state is an element that represents a screen
in the user interface. Each screen change represents a transition of states in the system. So, the current screen
represents the current state of the application. The screen is represented by a boundary. This element is bound
to a single slot that controls the boundary visibility .So a slot is translated to a state.
A boundary action of a robustness diagrarn is tightly related to an event in the state diagram. It represents a
visual element that can cause a change in the application state. This element represents an event flred by the
user. This justifies the tight relationship between a boundary action and an event Both can be interpreted as
elements able to cause a state change in the system. So, a boundary action is translated to an event
After the states and events identification, rernains identification of transitions. Transitions can be obtained by
interpreting robustness diagrarns as an oriented graph. The elements are the nodes and the associations are the



arcs. A path between two slots containing a connection with a boundary action can identify a transition.
Navigability stated in associations deterrnines the transition orientation. Guard stereotypes encountered
alongside the path are accounted for guard conditions.

,StortUse�~
~--

Q(1 (~) ;;-Á:' Qc2
r--- cc.;;~'

L-:t Q(l (dedsion)

Figure 7- State diagram generated automatically

The transitions from the automatic generation are sometimes excessive, since some transitions may not exist.
In this case, the designer deterrnines wtúch transitions are false and take them away from the diagram that was
automatically generated. The other transitions are incomplete, because the actions associated to them are not
identified.
The heuristic used to recognize the transitions, from the Robustness Diagram, is very simple. This precludes
the iáentification of actions. Any control element between two slots, identified as a transition, may correspond
to an action, although there is no stereotype that indicates a control as an action.
As said above, the State Diagram automatic generation results in a incomplete state diagram, but this diagram
is consistent to the Robustness Diagram. The diagram is incomplete because actions corresponding to
transitions are not identified and some transitions may not be correctly identified. Nevertheless it keeps
consistency with the Robustness Diagram. After the automatic generation, the designer can improve the State
Diagram. During this process, the designer may add new states, transitions, etc. The creation of new states
may indicate that the Robustness Diagram is not complete and need to be reevaluated, resulting in an
improved use case.

2.7 Sequence Diagram

The sequence diagram, as well as the robustness diagram, shows how the classes interact during the execution
of the use case. This diagram represents the stream of messages between the classes found in the use case. Its
automatic generation is based on the robustness diagram semantics and on the stunt arctútecture concepts.
The f1fst stage for the automatic generation of the sequence diagram is the identification of the involved
classes in the use case. The elements of the robustness diagram are classified in class or methods, using the
same rules for the generation of the class diagram. The identified classes are added to the sequence diagram.
The messages contained in the sequence diagram correspond to the methods identified in the robustness
diagram. Each one of these messages is constituted by an origin and a destination. The origin is the class that
invokes the message, while the class that contains the corresponding method is the destination. The destination
of each message is identified directly from the robustness diagram analysis in agreement of what was
described in class diagram. On the other hand. the origin must be deterrnined taking into account the
underiying architecture.
The stunt architecture focuses on the implementation of the use case as a finite state rnachine, represented by
the RackStunt. The RackStunt receives stimulations from the user interface, which are transformed in events
of its state machine, causing transitions. The SlotStunt has the responsibility of receiving the event, making the
necessary verifications, executing the corresponding actions and indicating which is the resulting state for this
transition. Since the methods identified in the robustness diagram are related to the verifications and occurred
actions in the states machine transitions, the origin of these messages is the SlotStunt, corresponding to the
source state of the transition. Moreover, sorne inserted messages in the diagram correspond to methods
defined in the classes of the stunt arctútecture, which were added envisioning the production of a cleaner

diagram.



-;-1 ~ $ ~ ~ ~m.j ~,~.~'~~'~~
..í I I "-~ I I I I I
.-I .~, " I ,

..I .--;

; ;:~
..,..""-..

Figure 8- Sequence diagram generated automaticaIly

3 AssessmeDt

3.1 ExteDsioD of the robustness diagram semaDtics

The extension of the robusb1ess diagram semantics increased its capacity to capture the ideas contained in the
use case. This was the starting point to establish a correlation between its elements and the elements of other
diagrams, envisioning the automatic generation of logical diagrams and source code. The automatic generation
maintains the consistency among the several diagrams, during the whole modeling.
The proposal of this work was tested in the modeling and implementation of some modules of the SIRA
system, that is an integrated system for academic registration, implemented in Java [13]. As a consequence,
the automatic generation was targeted to Java source code. The case tool used in the system modeling was
ObjectDomain [14]. This tool is written in Java, and it allows the access to the intemal metamodel through
extemal modules. This facilitated the automatic generation implementation through the use of pluggable
modules.

3.2 PredefiDed architecture

The robusb1ess diagram, although retlecting the use case semantics, does not conform to system modeling
based on architectures deviating from the MVC, for example, the view-model architecture. Some systerns, due
to its simple nature, suggest a model of simpler implernentation, defrauding the concepts of the MVC
architecture. Frequently, the planners opt for view-rnodel architecture, which promotes a direct connection
between view and model, where the view assumes the functionality of the control. In this case, the system
implernentation can be simpljfied, and executed quick1y.
Web applications are a good example of view-model architecture, where persisting the application current
state is not necessary during the user's session. The user navigates through random pages, filling data forrns
stored in the database. In this case, the current state of the application doesn't rnatter, and the browser session
is used to identify the user during its surfing through application screens.
In order to make robusb1ess diagrams suit these architectures, a new group of rules can be created, or the
existent rules can be relaxed under certain circurnstances. Relaxing the rules would allow a view element to
invoke another view elernent directly, without having to pass through the verification of a control element.
The autornatic generation of these systerns demands the design of an architecture based on the view-model
paradigm. This architecture could be a simplification of the stunt architecture. The control elernents tend to
disappear, once the control of the application is delegated to the view. Besides, the use case doesn't need a
state machine, eliminating SlotStunt from the stunt architecture and the state diagram from the rnodel. These
simplifications reduce the modeling complexity, as well as they facilitate the automatic generation of diagrarns
and code.

3.3 Source code geDeratioD

The autornatic generation process started in the robusb1ess diagram analysis maintains the consistency among
the several diagrarns, up to the rnoment when the diagrarns contents are translated into source code. The
automatic generation implemented in this work brings benefits to the planner during the modeling task,
accelerating the construction of the diagrarns. In spite of that, the planner sornetimes has to check if the
diagram is correct, and, most of the time, he has to add details to the diagram. The objective of this work is to
reduce the effort spent in diagram construction, so that the planner just concentrates on the elaboration of the
use case. Besides, the greater is the diagrarns expressivity, more complete it will be the code generation,
accelerating the modeled system implernentation.



The result obtained by the implementation of automatic generation process constitutes a great progress in
relation to this work proposal. In spite of that. there are still many problems that need to be solved to achieve
better efficiency in automatic generation. Some stages of the automatic generation are discussed forward,
relating advantages, flaws and possible solutions.
The state machine automatic generation works well in maintaining the consistency between the robustness
diagram and the state diagram. But it contains some flaws as the creation of false transitions and the absence
of the actions. This could be solved by the addition of elements to the robustness diagram.
The creation of false transitions resides in the simplicity of the heuristic used in the identification of the
transitions starting from the elements of the robustness diagram. The problem resides in the fact that certain
paths between two slots, which are recognized as transitions, don't co1Tespond to any piece of the use case
scripl. Since the elements of the robustness diagram correspond to ideas described in the script, the
construction of the robustness diagram can follow the text of the script, numbering each one of the transitions
created. That numeration would facilitate the recognition of the transitions, and also improve the
understanding of the interaction among the diagram elements.
The difficulty in recognizing the corresponding actions to transitions can be overcome with the addition of a
stereotype that identifies the control element as a resulting action of a state transition.
The generation of a more complete state diagram, that needs a smaller number of modifications by the planner ,
it is possible through the addition of the elements described above. This allows the planner to concentrate on
verifying if is necessary to add new elements to the generated diagram, as, for example, the addition of a new
state, that doesn't have a co1Tesponding slot in the robustness diagram, indicating the need of a revision in the
use case.
The state diagram contains the state machine description of the use case controller. The source code
generation is the result of the state machine elements interpretation. In a general way, detailed diagrams result
in complete and functional code. The source code generated from the state diagrams of the SIRA modeling,
with minor adjustrnents, proved to be functional. Screen sequences were controlled in confoITnance to the use
case requirements.
The necessary fittings to the generated source code, most of the time, are related to the business rules
implementation. In any stage of the modeling it is possible to specify in details the business rule, in such way
that its irnplementation is generated automatically. This could be possible, increasing the details in the

diagrams.
The sequence diagram holds a larger amount of details. It is closer to the system implernentation, portraying
the message flow among the objects. Starting from its interpretation, it is possible to determine part of the
method implementation of the objects, in respect of invocation of another methods. But, this diagram doesn't
have enough expressivity to represent loops or condition tests. To supply that need, it would be necessary to
add new elements to the diagram, that would turn it more detailed and they would facilitate the generation of
more complete code. It is important to observe that the diagram detailing should maintain its construction
simplicity and understanding, without bringing larger complexity the modeling task.
The addition of new elements to the sequence diagram can render it too complex. On the other hand, the
detailing of that diagram could be made in auxiliary diagrams, which would have the objective of detailing the
execution of the methods co1Tesponding to the messages. This way, the planner would associate a diagram to
the message, which would consist of the meticulous specification of the message execution.
The execution flow of a method can be expressed in the form of a deterministic automaton, as well as the state
machine represented in the state diagram. Following the same philosophy of the screen diagram, the auxiliary
diagram can already be obtained starting from the reinterpretation of an existing diagram, which in this case
could be the state diagram. To achieve this it would be necessary to establish a relationship among language
constructions, as loops and conditional tests, and the state diagram elements. The combination of the sequence
diagram with the new interpretation of the state diagram would result in a diagram rich in details, with the
potential of being the base for the generation of complete source code.
The screen diagram contains the necessary inforn1ation for the creation of the application graphic interface.
The generation of a XUL document starting from the screen diagram contents is a very simple task, since its
structure is similar the XUL structure. The abstract description contained in the XUL document entitles the
generation of several representations. The SIRA system supports rendering in HTML and Swing [15], and it
implements modules that interpret XUL and render the two mentioned interfaces. This allows similar systems
to use any user interface without changing its modeling or control code.



4 Conclusion

The tradeoff between abstraction and objectivity has always been balanced towards the cost effectiveness of

subjective interpretation of design leveI specifications. The rnain consequence is an augmented distance
between represented design and implementation. Skillful programmers, fine-tuned with designers, are required
to capture the implementation concept from summary design representations. Conversely, fine grain

descriptions can alleviate the effort of following the designer's intention and the risk of rnisinterpretation.
Conciliating the lightweight burden of high-Ievel abstraction with the objectivity of detailed description, we
have proposed an autornated generation of mu1tiple diagrarns, stemmed from a single representation.
Reengineering and refinement of UML diagrarns are proposed to cover the whole range necessary to produce
a fully fleshed inforrnation system. These diagrarns cover from user interface to persistency deployment of

entities, including control logic. Once generated they can be fed back to the designer, both to access the
accuracy of the original design and to allow retouches necessary to rnatch undiscovered or rnistaken

assumptions.
The system was implemented adding scripts to a professional CASE tool and tested in the conversion of a

legacy system. The method was taught to undergraduates, and good results were achieved in few weeks of

training, design and implementation.
Enhancing abstraction towards dynarnic modeling, capable of encompass design patterns, aspects and
evolutive computing is still a challenge. These very same techniques applied under the hood of CASE tools
can bring better solutions to the current stage of automation and extend it to cover their own needs.

5 References

1. Fowler M., Scott K.: UML Distilled -A Brief Guide to the Standard Object Modeling Language
2. Page-Jones, M.: Fundamentals of Object-Oriented Design in UML (2000) -Dorset House Publishing
3. Rosemberg, D.; Scott, K.; Use Case Driven Object Modeling With UML: A Practica1 Approach; Addison-Wesley;

1999.
4. Gamrna, E.; Helm, R.; Johnson, R.; Vlissides, J.; "Design Patterns -Elements ofReusable Object-Orient

Software..; Addison-Wesley; 1998.
5. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and

John Irwin. Aspect-oriented programming. In Proceedings of the European Conference on Object-Oriented
Programming, number 1241 in Lecture Notes in Computer Science, pages 220{242. Springer-Verlag, June 1997.

6. iContract: Design by Contract in Java -htt :llwww..avaworld.com/.avaworld/.w-02-2001rw-0216-cooltools.html
7. Metaprogramming and Free Availability of Sources -http:llfare.tunes.org/articles/l199/mpfas.htm1
8. Genetic Programming III: Darwinian Invention and Problem Solving, John R. Koza, Forrest H. Bennett III, Forrest

H. Bennett, Martin Keane, David Andre (Morgan Kaufmann Publishers, March 15, 1999)

9. "Developer's Guide -Borland -Jbuilder 2.., Borland, 1998.
10. XUL Programmer's Reference Manua1- http:llwww.mozilla.on?:/xDfe/xulref/XUL Reference.HTML
11. Monson-Haefel, R., "Enterprise JavaBeans, 2nd Edition.., O'Reilly & Associates, 2000
12. McLaughlin, B.; "Java and XML.., O'Reilly, 2000.
13. Eckel, B.; Thinking in Java; Prentice Ha11 P1R; 1998
14. http:llwww.objectdomain.com
15. Robinson, M.; Vorobiev, P.; "Swing"; Manning Publications Co.; 1999.


