Skip to main content

Minimally Thin Discrete Triangulation

  • Chapter
Volume Graphics

Abstract

The “discrete approach” of volume graphics (that is, the one using internal model, which is a set of voxels) has various advantages over surface graphics [1]. In particular, it is helpful for ensuring the use of exact arithmetic and thus avoiding rounding errors. This may also help to raise significantly the computational efficiency of some computer graphics algorithms, in particular, of the ray-tracing algorithm [2]. Based on a detailed analysis of the matter, Kaufman et al. prognosticated that “… volume graphics will develop into a major trend in computer graphics” [1]. For additional arguments and experience supporting the above thesis, the reader is referred to Chapters 4, 6 and 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kaufman A, Cohen D, Yagel R. Volume graphics. IEEE Computer, 1993; 26 (7): 51 - 64.

    Google Scholar 

  2. Yagel R, Cohen D, Kaufman A. Discrete ray tracing. IEEE Computer Graphics and Applications, 1992; 22 (5): 19–28.

    Article  Google Scholar 

  3. Kaufman A, Shimony E. 3D scan-conversion algorithms for voxel-based graphics. In: Proc. 1986 Workshop on Interactive 3D Graphics, Chapel Hill, NC, ACM, New York, 1986; 45–75.

    Google Scholar 

  4. Kaufman A. An algorithm for 3D scan-conversion of polygons. In: Proc. Eurographics ’87; 197–208.

    Google Scholar 

  5. Cohen D, Kaufman A. Scan-conversion algorithms for linear and quadratic objects. In: Proc. IEEE Symposium on Volume Visualization, Los Alamos, CA, 1991; 280–301.

    Google Scholar 

  6. Cohen D, Kaufman A. 3D Line voxelization and connectivity control. IEEE Computer Graphics and Applications, 1997; 17(6).

    Google Scholar 

  7. Andres E, Nehlig P, Fran?on J. Tunnel-free supercover 3D polygons and polyhedra. In: Proc. Eurographics ’97; 16(3): C3-C13.

    Google Scholar 

  8. Françon J. On recent trends in discrete geometry in computer imagery. In: Proc. the 6th Workshop on Discrete Geometry for Computer Imagery, Lyon, France, Lecture Notes in Computer Sciences No 1176, Springer-Verlag, November 1996; 141–150.

    Google Scholar 

  9. Andres E, Nehlig P, Fran?on J. Supercovers of straight lines, planes and triangles. In: Proc. the 7th International Workshop DGCI, Montpelier, France, Lecture Notes in Computer Science No 1347, Springer Verlag, 1997; 243–254.

    Google Scholar 

  10. Andres E, Achatya R, Sibata C. The discrete analytical hyperplane. Graphical Models and Image Processing, 1997; 59 (5): 302–309.

    Article  Google Scholar 

  11. Barneva RP, Brimkov VE, Nehlig P. Thin discrete triangular meshes. To appear in Theoretical Computer Science, Elsevier.

    Google Scholar 

  12. Debled-Rennesson I, Reveilles J-P. A new approach to digital planes. In: Spie’s International Symposium on Photonics for Industrial Applications, Technical Conference Vision Geometry 3, Boston, USA, 1994.

    Google Scholar 

  13. Brimkov VE, Barneva RP. Graceful planes and thin tunnel-free meshes. In: Proc. of the 8th Conference on Discrete Geometry for Computer Imagery, March 17–19, 1999, Marne-la-Vallee, France, Lecture Notes in Computer Sciences No 1568, Springer-Verlag, March 1999; 53–64.

    Google Scholar 

  14. Figueiredo O, Reveilles J-P. A contribution to 3D digital lines. In: Proc. the 5th International Workshop on Discrete Geometry for Computer Imagery, Clermont- Ferrand, France, September 25–27, 1995; 187–198.

    Google Scholar 

  15. Rosenfeld A. Three-dimensional digital topology. Computer Science Center, Univ. of Maryland, Tech. Rep. 963, 1980.

    Google Scholar 

  16. Srihari SN. Representation of three-dimensional digital images. Computing Surveys, 1981; 4 (13): 399–424.

    Article  Google Scholar 

  17. Pavlidis T. Algorithms for Graphics and Image Processing. Computer Science Press, Rockville, MD, 1982.

    Google Scholar 

  18. Reveilles J-P. Geometrie Discrete, Calcul en Nombres Entiers et Algorithmique, these d’etat, Universite Louis Pasteur, Strasbourg, 1991.

    Google Scholar 

  19. Bresenham JE. Algorithm for computer control of a digital plotter. ACM Transaction on Graphics, 1965; 4 (l): 25–30.

    Google Scholar 

  20. Cohen D, Kaufman A. Fundamentals of surface voxelization. CVGIP-GMIP, 1995; 57 (6): 453–461.

    Google Scholar 

  21. Kaufman A, Cohen D, Yagel R. Normal estimation in 3D discrete space. The Visual Computer, 1992; 8: 278–291.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Brimkov, V.E., Barneva, R.P., Nehlig, P. (2000). Minimally Thin Discrete Triangulation. In: Chen, M., Kaufman, A.E., Yagel, R. (eds) Volume Graphics. Springer, London. https://doi.org/10.1007/978-1-4471-0737-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0737-8_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-192-4

  • Online ISBN: 978-1-4471-0737-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics