Skip to main content

Urban Cellular Automata: An Evolutionary Prototype

  • Conference paper
ACRI ’96

Abstract

The subject of the paper is a cellular automata with evolutionary transition functions, applied in urban context. Using a cellular automata to describe a phenomenon, the definition of the model consists in building the local transition rules; this process may be supported by a machine learning tool like a Learning Classifiers System. Because this formalism uses genetic algorithms to select and to find rules, the model is explicitly evolutionary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. S. Antman, Nonlinear Problems of Elasticity, Springer, 1995.

    MATH  Google Scholar 

  2. V. I. Arnol’d and B. A. Khesin, Topological Methods in Hydrodynamics, Springer, 1998.

    Google Scholar 

  3. A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, 1992.

    MATH  Google Scholar 

  4. J. M. Ball and R. D. James, From Microscales to Macroscales in Materials, in preparation.

    Google Scholar 

  5. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford, 1998.

    MATH  Google Scholar 

  6. C.-M. Brauner and C. Schmidt-Lainé, eds., Mathematical Modeling in Combustion and Related Topics, Nijhoff, 1988.

    MATH  Google Scholar 

  7. A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford, 2000.

    MATH  Google Scholar 

  8. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, 1996.

    Book  MATH  Google Scholar 

  9. H. D. Bui, Inverse Problems in the Mechanics of Materials: An Introduction, CRC, 1994.

    Google Scholar 

  10. A. J. Chorin, Vorticity and Turbulence, Springer, 1994.

    MATH  Google Scholar 

  11. P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity; Vol. II: Theory of Plates; Vol. III: Theory of Shells; 1998, 1997, 2000, North-Holland.

    Google Scholar 

  12. B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, 1989.

    MATH  Google Scholar 

  13. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, 2000.

    MATH  Google Scholar 

  14. T. Dubois, F. Jauberteau, and R. Temam, Dynamic Multilevel Methods and the Numerical Simulation of Turbulence, Cambridge, 1999.

    Google Scholar 

  15. A. C. Eringen and G. A. Maugin, Electrodynamics of Continua, Springer, 1990.

    Book  Google Scholar 

  16. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Papini, L., Rabino, G.A. (1997). Urban Cellular Automata: An Evolutionary Prototype. In: ACRI ’96. Springer, London. https://doi.org/10.1007/978-1-4471-0941-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0941-9_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76091-7

  • Online ISBN: 978-1-4471-0941-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics