Skip to main content

Hardware Supported Simulation System for Graph Based and 3D Cellular Processing

  • Conference paper
ACRI ’96

Abstract

This paper presents results of a project in which a hardware supported simulation system for Cellular Processing (CP) is implemented. For three dimensional regular CP the hardware archltecture, the cellular description language CDL and a method for the efficient generation of the simulator kernel are explained. For irregular graph based CP the principal characteristics and their hardware support are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woolson, I. H.: “Some remarkable tests indicating ‘Flow’ of concrete under pressure,”; Engineering News, 54, 18, 1905.

    Google Scholar 

  2. Neville, A. M.: Creep of Concrete: Plain, reinforced and Prestressed, North Holland, Amsterdam, 1970.

    Google Scholar 

  3. Davis, H. E.: “Flow of concrete under sustained compression stresses” Proc. ASCE, Part 3, May 1928.

    Google Scholar 

  4. Davis, R. E. and H. E “Flow of concrete under sustained compression stresses,” Proc. ASTM, 30, Part 2, 1930.

    Google Scholar 

  5. Davis, R. E. and H. E “Flow of concrete under the action of sustained load.” J. Am. Concr. Inst. 37, 1931.

    Google Scholar 

  6. Davis, R. E., Davis, H. E., and Brown, H. E. “Plastic flow and volume changes of concrete.” Proc. ASTM, 37, Part 2, 1937.

    Google Scholar 

  7. Davis, R. E., Davis, H. E., and Hamilton, J. S. “Plastic flow of concrete under sustained stress.” Proc. ASTM, Part 2, 1934.

    Google Scholar 

  8. Glanville, W. H.: “The creep or flow of concrete under load.” Building Research Technical Paper No. 12. H.M. Stationary Office, 1930.

    Google Scholar 

  9. Glanville, W. H. and Thomas, F. G.: “Further investigations on the creep or flow of concrete under load.” In: “Studies in reinforced concrete, Part III,” Department of Scientific and Industrial Research. Building Research Technical Paper No. 12, London, 1930, Technical Paper No. 21. London. 193-9.

    Google Scholar 

  10. Wagner, 0.: “Das Kriechen unbewehrten Betons” (Creep of unreinforced concrete). Deutscher Ausschuss für Stahlbeton, Heft 131, Verlag Wilhelm Ernst and Sohn, Berlin, 1958.

    Google Scholar 

  11. ACI Committee 209, Annotated Bibliography on Shrinkage and Creep in Concrete—1905-1964, American Concrete Institute, Detroit, 1967, 102 pp.

    Google Scholar 

  12. Lorman, W. R.: List of Additional References to Creep and Volume Changes of Concrete 1901-1964, American Concrete Institute, Detroit, 1967, 58 pp.

    Google Scholar 

  13. Hummel, A.: “Vom Kriechen und Fliessen des erhärteten Betons und seiner praktischen Bedeutung” (Creep and flow of hardened concrete and its practical significance), Zement, No. 50 /51, 1935.

    Google Scholar 

  14. Kordina, K.: “Influence of time upon strength and deformation of concrete.” Final report on RILEM Symposium, 1958, RILEM Bulletin No. 9, 1960.

    Google Scholar 

  15. Rüsch, H., Kordina, K., and Hilsdorf, H. K.: “Der Einfluss des mineralogischen Charakters der Zuschläge auf das Kriechen von Beton” (The influence of the mineralogical character of the aggregates upon creep of concrete), Deutscher Ausschuss für Stahlbeton, Heft 146, Verlag Wilhelm Ernst and Sohn, Berlin, 1962.

    Google Scholar 

  16. Alexandrowski, S. W.: “Design of concrete and reinforced concrete structures with regard to temperature and humidity effects taking into account creep” (in Russian), Moscow, 1966.

    Google Scholar 

  17. Illston, J. M.: “The delayed elastic deformation of concrete as a composite material.” International Conference on the Structure of Concrete. Cement and Concrete Association, London, 1968.

    Google Scholar 

  18. Neville, A. M.: “Theories of creep in concrete,” J. Am. Concr. Inst., 52, 1955.

    Google Scholar 

  19. Hansen, T. C.: “Creep of concrete, a Discussion of some fundamental problems,” Bulletin No. 33 of the Swedish Cement and Concrete Institute at the Royal Institute of Technology, Stockholm, 1958.

    Google Scholar 

  20. Ali, J., and Kesler, C. E.:.. “Mechanisms of creep in concrete.” Symposium on Creep of Concrete, ACI Special Paper No.9, Detroit, 1964.

    Google Scholar 

  21. L’Hermite, R.: “What do we know about plastic deformation and creep of concrete?” RILEM Bulletin No. 1, Paris, March 1959.

    Google Scholar 

  22. Heilman, H.: “Beziehung zwischen Zug- und Druckfestigkeit des Betons” (Relations between tensile and compressive strength of concrete), Beton, Heft 2, Beton-Verlag, Dusseldorf, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Hartmann, P., Hochberger, C., Hoffmann, R., Schnieder, R., Völkmann, KP. (1997). Hardware Supported Simulation System for Graph Based and 3D Cellular Processing. In: ACRI ’96. Springer, London. https://doi.org/10.1007/978-1-4471-0941-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0941-9_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76091-7

  • Online ISBN: 978-1-4471-0941-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics