Skip to main content

Scaled On-line Unsupervised Learning Algorithm for a SOM-HMM Hybrid

  • Conference paper
  • First Online:
Computer and Information Sciences II

Abstract

A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a scaled on-line gradient descent unsupervised learning algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  2. Koski, T.: Hidden Markov Models for Bioinformatics. Kluwer Academics Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  3. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach, 2nd edn. The MIT Press, Cambridge (2001)

    Google Scholar 

  4. Mount, D.W.: Bioinformatics: Sequence and Genome Analysis, 2nd edn. Cold Spring Harbor Laboratory Press, New York (2004)

    Google Scholar 

  5. Kang, J., Feng, C.-J., Shao, Q., Hu, H.-Y.: Prediction of chatter in machining process based on hybrid SOM-DHMM architecture. In: Proceedings of the 3rd International Conference on Intelligent Computing, pp. 1004–1013 (2007)

    Google Scholar 

  6. Rogovschi, N., Lebbah, M., Bennani, Y.: Learning self-organizing mixture markov models. J. Nonlinear Syst. Appl. 1, 63–71 (2010)

    Google Scholar 

  7. Tsuruta, N., Iuchi, H., Sagheer, A., Tobely, T.: Self-organizing feature maps for HMM based lip-reading. In: Proceedings of the 7th International Conference Knowledge-Based Intelligent Information and Engineering Systems, pp. 162–168 (2003)

    Google Scholar 

  8. Hammer, B., Hasenfuss, A.: Relational neural gas. In: Proceedings of the 30th Conference on Artificial Intelligence, pp. 190–204 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Ferles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this paper

Cite this paper

Ferles, C., Siolas, G., Stafylopatis, A. (2011). Scaled On-line Unsupervised Learning Algorithm for a SOM-HMM Hybrid. In: Gelenbe, E., Lent, R., Sakellari, G. (eds) Computer and Information Sciences II. Springer, London. https://doi.org/10.1007/978-1-4471-2155-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2155-8_68

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2154-1

  • Online ISBN: 978-1-4471-2155-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics