Using Negation and Phrases in Inducing Rules
for Text Classification

Stephanie Chua, Frans Coenen, Grant Malcolm, and Matias Fernando
Garcia-Constantino

Abstract An investigation into the use of negation in Inductive Rule Learning (IRL)
for text classification is described. The use of negated features in the IRL process
has been shown to improve effectiveness of classification. However, although in
the case of small datasets it is perfectly feasible to include the potential negation
of all possible features as part of the feature space, this is not possible for datasets
that include large numbers of features such as those used in text mining applications.
Instead a process whereby features to be negated can be identified dynamically is re-
quired. Such a process is described in the paper and compared with established tech-
niques (JRip, NaiveBayes, Sequential Minimal Optimization (SMO), OlexGreedy).
The work is also directed at an approach to text classification based on a “bag of
phrases” representation; the motivation here being that a phrase contains semantic
information that is not present in single keyword. In addition, a given text corpus
typically contains many more key-phrase features than keyword features, therefore,
providing more potential features to be negated.

Stephanie Chua
Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, L69
3BX Liverpool, UK, e-mail: s.chua@liverpool.ac.uk

Frans Coenen
Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, L69
3BX Liverpool, UK, e-mail: coenen@liverpool.ac.uk

Grant Malcolm
Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, L69
3BX Liverpool, UK, e-mail: grant@liverpool.ac.uk

Matias Fernando Garcia Constantino
Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, L69
3BX Liverpool, UK, e-mail: mattgc @liverpool.ac.uk



Stephanie Chua, Frans Coenen, Grant Malcolm, Matias Fernando Garcia-Constantino

1 Introduction

Text mining is a well established component within the domain of Knowledge Dis-
covery in Data (KDD) and especially data mining. One element of text mining is
text classification where we wish to categorize documents according to a classifier
generated using a training set. Many techniques have been proposed whereby the
desired text classifier can be generated. Among the more popular techniques are the
k-nearest neighbour (k-NN) [19], support vector machines (SVMs) [9], probabilis-
tic Bayesian models [14, 19] and decision trees [8, 10] . The technique which is the
focus of this paper is inductive rule learning (IRL) [1, 5]. The particular focus of the
work described is IRL processes for text classification that incorporate an ability to
dynamically include negated features in the rule learning process. The motivation
here is twofold. Firstly, the inclusion of negated features in the IRL process can
typically improve the quality of the resulting classifier. Indeed we can contrive text
classification scenarios which can only be resolved by including negated features in
the rule generation process (this was demonstrated in [4]). Secondly, the dynamic
identification of candidate features that can be negated is seen as desirable as we
do not wish to generate the complete set of potential negations a priori. In the case
of datasets that have a small number of features, it is of course entirely feasible,
and therefore justified, to include all potential feature negations as part of the “in-
put”’; however this is not justified in the case of datasets with very large numbers
of features. The latter type of dataset is exemplified by the document collections
to which text classification is typically applied. Such collections are typically rep-
resented, for text mining purposes, using the “bag of words” or “bag of phrases”
representations. Document collections typically feature large numbers of keywords
and even larger numbers of key-phrases. Consequently, the work described here is
directed at the bag of phrases representation because this representation is likely to
exhibit a greater number of potential features to be negated than in the case of the
keyword representation. Thus, the objective of this paper is to evaluate the effec-
tiveness of our proposed IRL mechanism against other machine learning techniques
for text classification. In addition, the significance of using negation in IRL will be
investigated, as well as, experimenting with the bag of phrases representation. An
interesting point to evaluate include whether negated phrases can be more effective
in text classification.

The potential inclusion of negated features in the IRL text classification process
raises two issues. The first is the nature of the mechanism whereby we can iden-
tify the most appropriate negated features (without including all negated versions of
the entire feature set). The second is the nature of the rule refinement strategies re-
quired to generate rules with and without negation (without using a fixed template as
adopted in the case of some alternative approaches [15, 16]). A rule learning mech-
anism to include negation and a number of rule refinement strategies for addressing
these issues are proposed and evaluated.

The rest of this paper is organized as follows. Section 2 describes some related
work on IRL. Section 3 discusses our proposed mechanism for inductive rule learn-
ing with negation. Section 3.1 discusses the identification of negated features, and



Using Negation and Phrases in Inducing Rules for Text Classification

Section 3.2 details the different rule refinement strategies used in our IRL approach.
Section 4 discusses phrase extraction methods to extract phrases. The experimental
setup is described in Section 5 and the results in Section 6. Section 7 concludes the

paper.

2 Related Work

As noted in the previous section, many text classification techniques have been pro-
posed. The technique at which the work described in this paper is directed is IRL. As
in the case of some of the other techniques identified above, IRL offers the advan-
tage that it is easily interpretable by human analysts. Many different IRL systems
have been applied to the text classification problem. However, the focus in this pa-
per is on systems that are capable of generating rules with negation. Examples of
such systems include the Olex suite of systems [15, 16], and RIPPER (Repeated
Incremental Pruning to Produce Error Reduction) [5].

The Olex suite was developed by Rullo et al. and is founded on the idea of using
a fixed template that allows only one positive feature and zero or more negative fea-
tures to generate rules. The suite includes Olex Greedy and OlexGA. OlexGreedy,
as the name suggests, uses a “greedy”, single stage, rule learning process [15]. One
of the disadvantages of OlexGreedy, highlighted by the authors, is that the tem-
plate approach is not able to express co-occurrences based on feature dependencies.
Rullo et al. attempted to overcome this disadvantage by using conjunction of terms
(coterms). However, the authors again reported that rules that were generated using
the improved version could not share common features in the antecedent. Hence,
the authors proposed OlexGA [16], which uses a genetic algorithm to induce a rule-
based classifier. This version overcame the problems associated with OlexGreedy.
However, the generated rules still adhere to the fixed template of “one positive fea-
ture , zero or more negative feature(s)”. A criticism of Olex is that the use of such
templates is somewhat restrictive. Our IRL system proposes a number of rule re-
finement strategies that impose no restrictions on the number of positive or negated
features.

RIPPER is an IRL system which uses the covering algorithm to learn rules
whereby, when a rule is generated, the examples “covered” by the rule are removed
from the training set (the process then repeats until all examples are covered). RIP-
PER generates rules by greedily adding features to a rule until the rule achieves a
100% accuracy. This process tries every possible value of each feature and chooses
the one with the highest information gain. Following this rule building phase is a
rule pruning phase, whereby the generated rule is pruned using a pruning metric.
On the surface, it does not look like RIPPER includes any mechanism for explic-
itly generating rules with negation. However, in the case of binary-valued features, a
feature-value of zero (0) is interpreted as a negated feature (the absence of a feature).
The approach proposed in this paper also uses the covering algorithm; however, for



Stephanie Chua, Frans Coenen, Grant Malcolm, Matias Fernando Garcia-Constantino

reasons presented in Section 1, the search space does not include all possible nega-
tions of features from the feature set; instead these are identified as required.

3 Inductive Rule Learning with Negation

The proposed rule learning mechanism aims to improve the effectiveness of clas-
sifiers, comprising a small numbers of rules, by using both positive and negated
features, while maintaining the simplicity and effectiveness of the covering algo-
rithm. In the covering algorithm, rules are learned sequentially one at a time based
on the training dataset. The documents “covered” by a rule learnt are then removed
and the process is repeated until there are no more uncovered documents in the
training set or there are no more unused features in the feature set. Rule refinement
is a significant element of this approach. Suppose we have a rule F' = x; in general,
such a rule may cover both positive and negative documents: positive documents are
documents in the training set that are correctly classified, while negative documents
are those that are incorrectly classified. Rule refinement is used to obtain a more
specialized rule F Al = x. To prevent overfitting, or learning rules that are too pre-
cise, some stopping conditions to rule refinement were adopted. These conditions
stop the rule refinement; (i) when a rule no longer covers negative documents, (ii)
when the feature search space is empty or (iii) when the previous rule learnt has a
higher or equal accuracy to that of the current rule learnt. Generating rules without
negation is straightforward: we take / to be a conjunction of features that occur to-
gether in positive documents. However, generating rules with negation requires the
identification of the feature to be negated. This will be discussed in Section 3.1. Our
rule learning mechanism encompasses a number of strategies for rule refinement
and these are discussed in Section 3.2.

3.1 Identifying Features

The discriminating power of a feature with respect to a class is usually evaluated
using some statistical measure. In text classification, measures like chi-square (x?)
and information gain (IG) are commonly used to select the most discriminating
features with respect to a specific class.

We distinguish two strategies for feature selection: local and global. In local fea-
ture selection, ordered features that are local to a specific class are selected for
learning. Global feature selection involves the selection of features from across
all classes in a dataset. The maximum or weighted-average value of each feature’s
class-specific value is used to order and select features. In our experiments, despite
a rigorous reduction factor of 0.9 (using only 10% of the features), global feature
selection methods are still computationally expensive. We therefore focus on the
local feature selection method.



Using Negation and Phrases in Inducing Rules for Text Classification

In our proposed mechanism, during rule refinement, an appropriate feature is se-
lected from the local search space of the rule. The search space contains features
from both the positive and negative documents that are covered by the rule. Accord-
ingly, we divide the search space into the following three sub-spaces.

1. Unique Positive (UP). Features that appear only in positive documents: we call
these unique positive features.

2. Unique Negative (UN). Features that appear only in negative documents: we call
these unique negative features.

3. Overlap (Ov). Features that are found in both positive and negative documents:
we call these overlap features.

This division allows for the effective and efficient identification of positive or
negated features to be used when refining rules. Note that for a given rule, the UP,
UN and Ov sub-spaces may be empty, as the existence of these features depends
upon the content of the documents covered by the rule.

When refining a rule, a feature from either the UP, UN or Ov sub-spaces can
be selected to be added to the rule. If a UP or Ov feature is selected, it is simply
added to the rule, and is not negated. If a UN feature is selected, then its negated
form is added to the rule. When refining a rule with a UP or UN feature, we select
the feature with the highest document frequency, i.e. the feature that occurs in the
most covered documents. This ensures that the refined rule will cover the maximum
possible number of positive documents at every round of refinement. When refining
arule with an Ov feature, we select the feature with the highest document frequency
difference (i.e. positive document frequency minus negative document frequency).
This is because an Ov feature occurs in both positive and negative documents and
the feature that appears in the most positive documents and least negative docu-
ments will result in a refined rule that serves to maximise the number of positive
documents.

3.2 Rule Refinement Strategies

There are a number of possible strategies for rule-refinement using the three sub-
spaces, UP, UN and Ov. Here, we focus on eight of these. The first three strategies
use only a single sub-space, from which they take their names: UP, UN and Ov.
Table 1 shows a simple example of how the UP, UN and Ov strategies work.

Given that a sub-space may be empty, the UP, UN and Ov strategies may lead
to refinement being prematurely halted in the absence of any features to be added
to a rule. Two further strategies have been devised to address the empty sub-space
problem: UP-UN-Ov and UN-UP-Ov. These strategies use a sequence of sub-space
combinations and are labelled in the order that the sub-spaces are considered. Thus,
UP-UN-Opv entails the use of UP features first; if the UP sub-space is empty, then
UN features will be considered instead, and then the Ov features if the UN sub-
space is also empty. The UN-UP-Ov strategy works in a similar manner, only inter-



Stephanie Chua, Frans Coenen, Grant Malcolm, Matias Fernando Garcia-Constantino

Table 1 Example of rule refinement with UP, UN and Ov strategies

Feature set for class x = {bike, ride, harley, seat, motorcycles, honda}
Initial rule learnt = bike = x
The rule covers three documents (two positive documents and one negative document)

Doc 1 labelled class x = {bike, ride, motorcycles }
Doc 2 labelled class x = {seat, harley, bike, ride}
Doc 3 labelled class y = {bike, ride, honda}

Identify UP, UN and Ov features

UP feature(s) = {motorcycles, seat, harley}
UN feature(s) = {honda}

Ov feature(s) = {ride}

Strategies for rule refinement

Refine with UP = bike A\ motorcycle = x
Refine with UN = bike A\ ~honda = x
Refine with Ov = bike A ride = x

changing the order of UP and UN. In both cases, Ov is used last because using Ov
features will always result in the coverage of at least one negative document. In both
cases, if the first sub-space is not empty, then only features from that sub-space will
be used for rule refinement. This means that the UP-UN-Ov strategy may produce
the same results as the UP strategy, and similarly UN-UP-Ov may produce the same
results as the UN strategy. For each rule to be refined, each of these five strategies
may result in different rules. Our sixth strategy, BestStrategy, chooses the best rule
(using accuracy with Laplace estimation) from the results of the first five strategies.

Each of the first five strategies refines a rule by selecting a feature from a particu-
lar sub-space; this refined rule is then further refined (using the same strategy) until
some termination condition is met (e.g., the rule covers only positive documents,
or further refinement produces a rule that is less accurate). Each of these strategies
therefore corresponds to a depth-first search. A more exhaustive search through the
possible rules is provided by our final two strategies. The first, BestPosRule, refines
arule by creating two versions of the original rule; one version by selecting a feature
from the UP sub-space and another by selecting a feature from the Ov sub-space.
Each of these rules is further refined in the same manner until the refined version is
less accurate than the previous version. The rule with the best Laplace accuracy is
then selected as the rule to be added to the ruleset. This strategy makes use of two
sub-spaces during each refinement step and will only generate rules without nega-
tion. The second strategy, BestRule, is an extension of BestPosRule, where a third
version of the rule to be refined is generated by selecting a feature from the UN
sub-space. Thus, this strategy uses all three sub-spaces at each refinement step and
may generate rules with negation. Rule refinement works in the same manner as in
BestPosRule, but with an additional version where a feature from the UN sub-space
is added. Again, the rule with the best Laplace accuracy will be the one added to the
ruleset. Table 2 summarizes all the strategies described in this section.



Using Negation and Phrases in Inducing Rules for Text Classification

Table 2 Summary of proposed rule refinement strategies

Strategy Description Sample rules
UP Add a UP feature to refine a rule aNb=x
UN Add a UN feature to refine a rule ahN—c=x
Ov Add an Ov feature to refine a rule aNbANd = x

UP-UN-Ov If UP is not empty, add a UP feature to refine arule; Else If aAb=x
UN is not empty, add a UN feature to refine a rule; Else If
Ov is not empty, add an Ov feature to refine a rule

UN-UP-Ov If UN is not empty, add a UN feature to refine a rule; Else aAbA—c=x
If UP is not empty, add a UP feature to refine a rule; Else If
Ov is not empty, add an Ov feature to refine a rule

BestStrategy Choose the best rule from the five rules generated by each aAbAd = x
UP, UN, Ov, UP-UN-Ov and UN-UP-Ov

BestPosRule Generate two versions of rule; one refined with a UP feature aAbAdNe = x
and the other refined with an Ov feature. Choose the best
between the two versions

BestRule Generate three versions of rule; one refined with a UP fea- aAbA—-cA—f =x
ture, one refined with a UN feature and the other refined
with an Ov feature. Choose the best between the three ver-
sions

4 The Bag of Phrases Representation

The use of the “bag of phrases” representation is motivated by the potential benefit
of preserving semantic information that is not present in the “bag of words” rep-
resentation. There are various methods that may be adopted to identify phrases for
the bag of phrases representation. These methods tend to fall into two categories:
linguistic phrase extraction and statistical phrase extraction. The former is based on
linguistic patterns while the latter is based on statistical patterns.

Much previous work has reported on the use of phrases in text classification, al-
beit with mixed results. [6] investigated the use of linguistic phrases with both a
naive bayes classifier (RAINBOW) and a rule-based classifier (RIPPER) and found
that phrase features can improve classification at the expense of coverage. In [17],
noun phrases and key phrases were extracted and used in RIPPER for text classifi-
cation. The use of noun phrases was found to be only slightly better than the use of
key words, while the use of key phrases was found to be slightly worse. In general,
the authors reported no significant benefit from using phrases and concluded that
more complex natural language processing methods were needed to identify them.
In [2] phrases were extracted using a statistical word association based grammar,
and an improvement over the use of the bag of words representation was reported
using a naive bayes classifier. An n-gram word extractor was used in [13] to extract
frequent phrases for classifying research paper abstracts using various classifiers;
experiments showed that the bag of phrases representation was better than the bag
of words representation for their dataset. [3] investigated the use of phrases for email
classification and found that using phrases of size two gave the best classification



Stephanie Chua, Frans Coenen, Grant Malcolm, Matias Fernando Garcia-Constantino

results. However, none of the above investigated the use of negated phrases with re-
spect to IRL in text classification. For the work described here, two phrase extraction
mechanisms were adopted.

The first approach was founded on n-gram extraction and operated as follows:

Preprocess the dataset by removing stop words, numbers, emails and symbols.

. Extract n-grams from the preprocessed dataset.

3. Sort the extracted n-grams from each class in descending order according to their
chi-square values.

4. Select the top 10% of the extracted n-grams from each class to be used as features

for representation.

N =

The experiments reported later in this paper extracted three different kinds of n-
grams: 1-gram (which is essentially single keywords), 2-grams and 3-grams.
The second approach was a variation on the n-gram extraction approach:

1. Preprocess the dataset by removing numbers, emails and symbols. Stop words
are not removed.

2. Extract all single keywords in the dataset (not including stop words).

3. Sort the extracted single keywords from each class in descending order according
to their chi-square values.

4. Select the top 10% of the single keywords from each class and store in features
list.

5. Based on the selected single keywords, extract phrases from the dataset that con-
tain at least one keyword from the features list.

6. Sort the extracted phrases from each class in descending order according to their
chi-square values.

7. Select the top 10% of the extracted phrases from each class to be used as features
for representation.

This approach extracts sequences of words from the dataset that still had stop words
in them. Each phrase that was extracted consisted of at least one single keyword. The
experiments reported in the next section reported the use of a two-word (Phrase-2)
and a three-word (Phrase-3) based phrase extraction.

5 Experimental Setup

The experiments that were conducted compared the use of our proposed rule learn-
ing mechanism and rule refinement strategies with that of JRip, NaiveBayes (NB)
and Sequential Minimal Optimization (SMO) from the Waikato Environment for
Knowledge Analysis (WEKA) machine learning workbench [7]. In addition, an
OlexGreedy plug-in to WEKA [16] was also compared. > with a reduction fac-
tor of 0.9 was used as a dimensionality reduction method. Both the n-gram and
phrase extraction methods described in the previous section were considered.



Using Negation and Phrases in Inducing Rules for Text Classification

Two well known text classification datasets, the 20 Newsgroups [11] and Reuters-
21578 Distribution 1.0 [12] were used for the evaluation. The 20 Newsgroups
dataset is a collection of 19,997 documents, comprising news articles from 20
classes. There are 1,000 documents in each class with the exception of one class that
contains 997 documents. In our experiments, this dataset was split into two non-
overlapping datasets (hereafter, referred to as 20NG-A and 20NG-B), each com-
prising 10 classes (20NG-A has 10,000 documents and 20NG-B 9,997 documents).
This dataset was split only for computational efficiency reasons as reported in Wang
[18], by taking 10 classes for 20NG-A and the remaining 10 classes for IONG-B.
Therefore, 20NG-A and 20NG-B should be viewed as two separate datasets and the
results should be considered in this context.

The Reuters-21578 Distribution 1.0 dataset is widely used in text classification.
It consists of 21,578 documents and 135 classes. In our experiments for single-
labelled text classification, the preparation of this dataset followed the method sug-
gested by Wang [18], where the top ten most populated classes were identified and
multi-labelled/non-text documents were removed from each class. This resulted in
a dataset with only eight classes and 6,643 documents. Hereafter, this dataset is
referred to as Reuters8.

Table 3 shows the number of features used with respect to each class in each
dataset. The number of features used is the top 10% of the potential set of features
ordered using %2 that can be used to describe a class. The number of features in-
creases from 1-gram to 3-grams and similarly, less phrases are extracted for Phrase-2
as compared to Phrase-3.

6 Evaluation

This section details the evaluation of the results obtained from the experiments con-
ducted. Our rule learning mechanism is denoted as RL with the identifier for the
different rule refinement strategies used appended. The micro-averaged F1-measure
from experiments using ten-fold cross validation are reported.

Table 4 gives the classification results for the 20NG-A dataset. The RL average
was computed for ease of comparison with the other machine learning methods. In
the RL mechanism, the strategies that generated rules with negation produced the
best results using the 1-gram and Phrase-2 representations, while strategies that gen-
erated rules without negation came in top for all but 1-gram representation. Compar-
ison of the n-gram approach when using the RL mechanism shows that when using
the 2-grams representation the best results are produced, while the worst results were
generated using the 3-grams representation. RL+BestStrategy produced slightly bet-
ter results than all the other RL strategies when a 1-gram representation was used.
It was also better than JRip, NaiveBayes and OlexGreedy but was slightly worse
than SMO. For the 2-grams, 3-grams, Phrase-2 and Phrase-3 representations, the
RL mechanism produced the top two best results as compared to JRip, NaiveBayes,
SMO and OlexGreedy. When using JRip, NaiveBayes, SMO and OlexGreedy, the



Stephanie Chua, Frans Coenen, Grant Malcolm, Matias Fernando Garcia-Constantino

Table 3 10% of all the total features extracted for each class in each dataset

Dataset/Classes 1-gram 2-grams 3-grams Phrase-2 Phrase-3
20NG-A

rec.motorcycles 1205 4666 5197 1631 3247
talk.religion.misc 1597 7743 8836 3269 7334
sci.electronics 1208 5231 5824 1914 3740
alt.atheism 1442 7522 8628 3252 7530
misc.forsale 1150 4256 4908 2003 3749
sci.med 1837 8408 9524 3250 6553
talk.politics.mideast 1922 11433 13270 5613 12494
comp.sys.ibm.pc.hardware 1069 4929 5892 2404 5281
rec.sport.baseball 1086 5439 6369 2650 5507
comp.windows.x 1713 8377 9934 4260 8769
20NG-B

comp.graphics 1395 6638 7723 2938 5919
comp.sys.mac.hardware 1062 4685 5421 2036 4371
rec.sport-hockey 1250 6738 8295 3560 7208
sci.crypt 1539 8000 9333 3399 7487
sci.space 1629 8287 9487 3198 6453
talk.politics.guns 1676 8282 9536 3354 7417
comp.os.ms-windows.misc 2709 10945 13001 6427 13864
rec.autos 1231 5318 5986 1905 3909
talk.politics.misc 1769 10312 11937 4090 9350
soc.religion.christian 1640 9868 11344 4756 11386
Reuters8

acq 1283 9236 12724 5153 12579
crude 630 3451 4397 1694 3825
earn 1040 5607 8132 3298 8074
grain 263 820 925 257 485
interest 340 1473 1830 688 1542
money-fx 526 2885 3632 1494 3440
ship 365 1164 1310 448 851
trade 597 3488 4451 1780 4210

best results were produced using the 1-gram (keyword only) representation and the
worst using the 3-grams representation.

The performance for the RL mechanism in the case of the 20NG-B dataset in
Table 5 showed that the strategies that generated rules with negation came in the top
two for all the representations, while strategies that generated rules without nega-
tion came top for all the representations with exception of the 1-gram representa-
tion. The 2-gram representation was better than 1-gram and 3-grams for the RL
mechanism. Similar to the 20NG-A dataset, when using JRip, NaiveBayes, SMO
and OlexGreedy, the best results were produced when using the 1-gram represen-
tation and the worst using the 3-grams representation. The RL+BestRule strategy
was slightly better than the other RL strategies, as well as the JRip, NaiveBayes and
OlexGreedy for the 1-gram representation; but was worse than the SMO. The RL
mechanism again came into the top two when the 2-grams, 3-grams, Phrase-2 and



Using Negation and Phrases in Inducing Rules for Text Classification

Table 4 Micro-averaged F1-measure for the 20NG-A dataset using both n-grams and phrases rep-
resentation (top two best results shown in bold)

Method/Rep 1-gram 2-grams 3-grams Phrase-2 Phrase-3
RL + UP 0.800 0.828 0.786 0.920 0.873
RL + UN 0.810 0.832 0.793 0.898 0.859
RL + Ov 0.803 0.836 0.796 0.894 0.859
RL + UP-UN-Ov 0.800 0.826 0.783 0.920 0.873
RL + UN-UP-Ov 0.810 0.832 0.788 0.901 0.862
RL + BestStrategy 0.830 0.833 0.791 0.911 0.864
RL + BestPosRule 0.824 0.837 0.794 0.907 0.866
RL + BestRule 0.821 0.831 0.789 0.910 0.864
RL Average 0.812 0.832 0.790 0.908 0.865
JRip 0.760 0.665 0.612 0.785 0.665
NaiveBayes 0.636 0.603 0.480 0.704 0.587
SMO 0.849 0.814 0.759 0.905 0.853
OlexGreedy 0.824 0.729 0.580 0.862 0.714

Phrase-3 representations were used, as compared to JRip, NaiveBayes, SMO and
OlexGreedy.

Table 5 Micro-averaged F1-measure for the 20NG-B dataset using both n-grams and phrases rep-
resentation (top two best results shown in bold)

Method/Rep 1-gram 2-grams 3-grams Phrase-2 Phrase-3
RL + UP 0.844 0.873 0.827 0.933 0.891
RL + UN 0.825 0.862 0.830 0.911 0.881
RL + Ov 0.824 0.866 0.831 0.908 0.880
RL + UP-UN-Ov 0.844 0.873 0.826 0.933 0.891
RL + UN-UP-Ov 0.823 0.862 0.828 0914 0.882
RL + BestStrategy 0.861 0.869 0.829 0.920 0.884
RL + BestPosRule 0.858 0.869 0.829 0.917 0.882
RL + BestRule 0.862 0.869 0.830 0.919 0.883
RL Average 0.843 0.868 0.829 0.919 0.884
JRip 0.808 0.754 0.694 0.844 0.746
NaiveBayes 0.656 0.654 0.540 0.734 0.604
SMO 0.892 0.858 0.800 0.895 0.873
OlexGreedy 0.845 0.780 0.619 0.890 0.758

The results for the Reuters8 dataset in Table 6 showed a slightly different trend
than that for 20NG-A and 20NG-B. In the RL mechanism, the strategies that gen-
erated rules with negation produced the best top two results for 2-grams and 3-
grams while strategies that generated rules without negation came in the top two for
Phrase-2 and Phrase-3 and top in 3-grams. Again, 2-grams was still the best repre-



Stephanie Chua, Frans Coenen, Grant Malcolm, Matias Fernando Garcia-Constantino

sentation for the RL mechanism. However, 3-grams seemed to be slightly better for
some of the strategies as compared to 1-gram. While JRip, SMO and OlexGreedy
showed decreasing classification results in the order of 1-gram to 3-grams, Naive-
Bayes had the best results when 2-grams was used, as opposed to 1-gram and 3-
grams. The RL mechanism produced the best top two results for all representations
except for 1-gram. In the 1-gram representation, the top two results were obtained
using SMO and JRip. In fact, SMO had the best results for all the representations
except for 3-grams.

Table 6 Micro-averaged Fl-measure for the Reuters§ dataset using both n-grams and phrases
representation (top two best results shown in bold)

Method/Rep 1-gram 2-grams 3-grams Phrase-2 Phrase-3
RL + UP 0.822 0.879 0.851 0.929 0.908
RL + UN 0.842 0.873 0.862 0.908 0.887
RL + Ov 0.860 0.871 0.867 0.898 0.890
RL + UP-UN-Ov 0.822 0.879 0.851 0.929 0.908
RL + UN-UP-Ov 0.848 0.871 0.857 0.908 0.887
RL + BestStrategy 0.877 0.884 0.861 0.922 0.906
RL + BestPosRule 0.882 0.885 0.859 0.923 0.904
RL + BestRule 0.822 0.887 0.863 0.923 0.907
RL Average 0.847 0.879 0.859 0918 0.900
JRip 0.896 0.844 0.735 0.907 0.854
NaiveBayes 0.775 0.802 0.698 0.843 0.799
SMO 0.932 0.911 0.840 0.953 0.916
OlexGreedy 0.883 0.875 0.787 0.915 0.875

The results obtained from the experiments suggested that when the RL mecha-
nism was used to learn rules, the use of the phrase representations was beneficial
with respect to text classification, particularly phrases of size two. This stemmed
from the fact that, while the 1-gram representation was good enough as a representa-
tion for text classification, the rich nature of natural language text provided the use of
phrases with the advantage of preserving semantic information that was not present
in single keywords. However, three words appearing in sequence were likely to be
occurring less frequently and too specific, and thus not appropriate for text classifi-
cation. 2-grams in general could occur more frequently and serve to segregate two
distinct classes when this could not be achieved using 1-gram. This however did not
hold true for JRip, NaiveBayes, SMO and OlexGreedy where decreasing effective-
ness was recorded when using 1-gram to 3-grams. All the techniques compared also
showed that Phrase-2 was better than Phrase-3, strengthening the argument that any
phrase longer than two was not effective for classification.

In the 20NG-A and 20NG-B dataset, the best RL strategy using the 1-gram rep-
resentation was that which generated rules with negation and was competitive with
SMO. In representations longer than one, strategies that generated rules without
negation were slightly better in the 20NG-A and 20NG-B datasets. This suggests



Using Negation and Phrases in Inducing Rules for Text Classification

that the use of negated features is more effective when single keyword representation
is used and less effective when the phrase representation is used. Single keywords
can be quite common across different classes and thus, the use of negated features
which are unique to other classes to learn rules that exclude documents from other
classes seems to be effective. However, when phrases are used in the representation,
the use of negation becomes “redundant”, due to the fact that a phrase itself can be
unique enough to differentiate documents from other classes. A different scenario
is depicted in the Reuters8 dataset though. For the Reuters8 dataset, the RL strategy
which generated rules with negation was slightly better than the others when the
2-gram representations was adopted, but came in second for all the other represen-
tations. This could suggest that more common 2-grams occur across the different
classes in the dataset.

As expected, SMO produced good classification results, as support vector ma-
chines have been shown to be one of the best techniques for text classification.
It was the best technique for the 1-gram representation, but was outperformed by
the RL mechanism for all the other representations for the 20NG-A and 20NG-B
datasets. It was again the best technique for the Reuters8 dataset with respect to all
representations except 3-grams. NaiveBayes consistently delivered the worst per-
formance with respect to all datasets and all representations. The RL mechanism
outperformed both JRip and OlexGreedy in all cases except for the 1-gram repre-
sentation in the Reuters8 dataset where they were closely competitive.

7 Conclusion

An investigation into IRL with negation and phrases has been described. We have
proposed an IRL mechanism, based on the covering algorithm, that includes a num-
ber of strategies for rule refinement. These strategies were devised based on the
division of the search space into three different sub-spaces: UP, UN and Ov. A
number of these strategies were designed to learn rules with negation. Experiments
were carried out to evaluate the effectiveness of our IRL mechanism against that
of other machine learning techniques. Interestingly, the evaluation showed that our
IRL mechanism outperformed all the other machine learning techniques that were
compared and was competitive with SMO. The experiments also aimed at investi-
gating the effectiveness of rules with negation, as well as the bag of phrases rep-
resentations for text classification. It was found that rules with negation were more
effective when the single keyword representation was used and less prominent when
the phrase representation was used. The use of phrases of size two was found to be
beneficial for text classification while phrases longer than two seemed to be too
unique to be useful.



Stephanie Chua, Frans Coenen, Grant Malcolm, Matias Fernando Garcia-Constantino

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Apté, C., Damerau, F. J., Weiss, S. M.: Automated learning of decision rules for text catego-

rization. In: ACM Transactions on Information Systems 12, 233-251 (1994)

Bakus, J., Kamel, M.: Document classification using phrases. In: Caelli, T. and Amin, A. and
Duin, R. and de Ridder, D. and Kamel, M. (eds.): Structural, Syntactic, and Statistical Pattern
Recognition, Lecture Notes in Computer Science, vol. 2396. Springer Berlin/Heidelberg, pp.
341-354 (2002)

Chang, M., Poon, C. K.: Using phrases as features in email classification. In: Journal of Sys-
tems and Software, Elsevier Science Inc., 82, pp. 1036-1045 (2009)

Chua, S., Coenen, F, Malcolm, G.: Classification Inductive Rule Learning with Negated Fea-
tures. In: Proceedings of the 6th International Conference on Advanced Data Mining and
Applications (ADMA’10), Part 1, Springer LNAI, pp. 125-136 (2010)

Cohen, W.: Fast effective rule induction. In: Proceedings of the 12th Int. Conf. on Machine
Learning (ICML), pp. 115-123, Morgan Kaufmann (1995)

Fiirnkranz, J., Mitchell, T., Riloff, E.: A case study in using linguistic phrases for text cate-
gorization on the WWW. In: Working Notes of the AAAI/ICML Workshop on Learning for
Text Categorization, AAAI Press, pp. 5-12 (1998)

. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H.: The WEKA

data mining software: An update. In: SIGKDD Explorations 11 10-18 (2009)

Holmes, G., Trigg, L.: A diagnostic tool for tree based supervised classification learning al-
gorithms. In: Proceedings of the 6th Int. Conf. on Neural Information Processing (ICONIP),
pp. 514-519 (1999)

Joachims, T.: Text categorization with support vector machines: Learning with many relevant
features. In: Proceedings of the 10th European Conf. on Machine Learning (ECML), pp. 137-
142 (1998)

Johnson, D. E., Oles, F. J., Zhang, T., Goetz, T.: A decision-tree-based symbolic rule induction
system for text categorization. In: The IBM Systems Journal, Special Issue on Al 41 428-437
(2002)

Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the 12th Int. Conf. on
Machine Learning, pp. 331-339 (1995)

Lewis, D. D. Reuters-21578 text categorization test collec-
tion, Distribution 1.0, README file (v 1.3). Available at
http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt (2004)

Li, Z., Li, P, Wei, W,, Liu, H., He, J., Liu, T., Du, X.: AutoPCS: A phrase-based text catego-
rization system for similar texts. In: Li, Q., Feng, L., Pei, J., Wang, S., Zhou, X., Zhu, Q.-M.
(eds.): Advances in Data and Web Management, Lecture Notes in Computer Science, vol.
5446. Springer Berlin/Heidelberg, pp. 369-380 (2009)

McCallum, A., Nigam, K.: A comparison of event model for naive Bayes text classification.
In: Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, pp. 41-48
(1998)

Rullo, P., Cumbo, C., Policicchio, V. L.: Learning rules with negation for text categorization.
In: Proceedings of the 22nd ACM Symposium on Applied Computing, pp. 409-416. ACM
(2007)

Rullo, P., Policicchio, V., Cumbo, C., Iiritano, S.: Olex: Effective rule learning for text cate-
gorization. In: Transaction on Knowledge and Data Engineering, 21:8 1118-1132 (2009)
Scott, S., Matwin, S.: Feature engineering for text classification. In: Proceedings of the 16th
Int. Conf. on Machine Learning (ICML), pp. 379-388 (1999)

Wang, Y. J.: Language-independent pre-processing of large documentbases for text classifca-
tion. PhD thesis (2007)

Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the
22nd ACM Int. Conf. on Research and Development in Information Retrieval, pp. 42-49
(1999)



