Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 41))

  • 1612 Accesses

Abstract

For the robust detection of lines in 2-dimensional images, it is feasible to have a general, a priori model reflecting the properties of lines. Based on three simple and generally applicable assumptions we introduce a stochastic line propagation model with its resulting Fokker-Planck equation and Green’s function. The line model implies a line diffusion scheme that is not simply another anisotropic diffusion of scalar-valued luminosity functions, but a mechanism for the anisotropic diffusion of oriented line segments in a 3-dimensional space that encodes position and orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. August, J.: The curve indicator random field. PhD thesis, Yale (2001)

    Google Scholar 

  2. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

    Article  Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–714 (1986)

    Article  Google Scholar 

  4. Duits, R., Almsick, M.A.: The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2d-Euclidean motion group. Q. Appl. Math. AMS 66(1), 27–67 (2008)

    Article  MathSciNet  Google Scholar 

  5. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part II: Nonlinear left-invariant diffusion equations on invertible orientation scores. Q. Appl. Math. 68, 293–331 (2010)

    Article  Google Scholar 

  6. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part I: Linear left-invariant diffusion equations on SE(2). Q. Appl. Math. 68, 255–292 (2010)

    Article  MathSciNet  Google Scholar 

  7. Duits, R., Franken, E.M.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92(3), 231–264 (2011)

    Article  MathSciNet  Google Scholar 

  8. Duits, R., van Almsick, M.: The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D-Euclidean motion group. Q. Appl. Math. 66, 27–67 (2008)

    Article  MathSciNet  Google Scholar 

  9. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. Éc. Norm. Super. 12, 47–88 (1883)

    Article  Google Scholar 

  10. Franken, E., Duits, R.: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vis. 85(3), 253–278 (2009)

    Article  Google Scholar 

  11. Iverson, L.A., Zucker, S.W.: Logical/linear operators for image curves. IEEE Trans. Pattern Anal. Mach. Intell. 17(10), 982–996 (1995)

    Article  Google Scholar 

  12. Koffka, K.: Principles of Gestalt Psychology. Harcourt, New York (1935)

    Google Scholar 

  13. Sharon, E., Brandt, A., Basri, R.: Completion energies and scale. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1117–1131 (2000)

    Article  Google Scholar 

  14. van Almsick, M.A.: Context models of line and contours. PhD thesis, Eindhoven University of Technology (September 2007)

    Google Scholar 

  15. Williams, L.R., Jacobs, D.: Stochastic completion fields: a neural model of illusory contour shape and salience. Neural Comput. 9(4), 837–858 (1997)

    Article  Google Scholar 

  16. Williams, L., Zweck, J., Wang, T., Thornber, K.: Computing stochastic completion fields in linear-time using a resolution pyramid. Comput. Vis. Image Underst. 76(3), 289–297 (1999)

    Article  Google Scholar 

  17. Zweck, J.W., Williams, L.R.: Euclidean group invariant computation of stochastic completion fields using shiftable-twistable functions. J. Math. Imaging Vision, 1–31 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus van Almsick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

van Almsick, M. (2012). An A Priori Model of Line Propagation. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_10

Download citation

Publish with us

Policies and ethics