Skip to main content

Local Statistics on Shape Diffeomorphisms Using a Depth Potential Function

  • Chapter
  • First Online:
Mathematical Methods for Signal and Image Analysis and Representation

Part of the book series: Computational Imaging and Vision ((CIVI,volume 41))

  • 1586 Accesses

Abstract

Shape diffeomorphisms are used along with statistical models to localize shape differences within a set of similar surfaces. Diffeomorphisms in images are found by looking at similarities within the intensity function of the image. Surfaces do not enjoy the availability of such an intensity function and one therefore needs to choose which function will give the most accurate match between similar features. Thus, it is important to choose an intensity function that faithfully represents features of the surface as accurately as possible. In this paper, we present a fast method which uses a curvature scale space to capture surface features over a wide range of scales. We recall the relationship between Poisson equation and scale space representations, and we use this relationship to formulate a potential function which integrates curvature information over a wide range of scales. The resulting map is a global function of bending (as measured by curvature) that is used to find diffeomorphic maps between surfaces. The potential function showed to be more accurate than a depth map computed on the surface.

As an application of the depth potential function, we use it to analyze diffeomorphic maps of the human brain through a statistical analysis of surface deformation. We used surfaces extracted from 92 subjects affected with very mild to mild dementia and 97 healthy subjects. Using T 2-statistics on the diffeomorphic map between the groups of demented and non-demented subjects, we were able to detect the atrophy of the interior and exterior temporal lobe due to the presence of mild dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  2. Boucher, M., Evans, A.: Dealing with uncertainty in the principal directions of tensors. In: Proceedings of the 2008 Conference on Computer Vision and Pattern Recognition Workshop, CVPRW’08, pp. 1–8. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  3. Boucher, M., Evans, A., Siddiqi, K.: Oriented morphometry of folds on surfaces. In: Proceedings of the 21st Conference on Information Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 5636, pp. 614–625. Springer, Berlin (2009)

    Chapter  Google Scholar 

  4. Boucher, M., Whitesides, S., Evans, A.: Depth potential function for folding pattern representation, registration and analysis. Med. Image Anal. 13(2), 203–214 (2009)

    Article  Google Scholar 

  5. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)

    Article  Google Scholar 

  6. Florack, L., Duits, R., Bierkens, J.: Tikhonov regularization versus scale space: a new result. In: Proceedings of the 11th International Conference on Image Processing, Singapore, October 24–27, 2004, pp. 271–274. IEEE Press, New York (2004)

    Google Scholar 

  7. Kim, J.S., Singh, V., Lee, J.K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., Lee, J.M., Kim, S.I., Evans, A.C.: Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27(1), 210–221 (2005)

    Article  Google Scholar 

  8. Lepore, N., Brun, C., Chou, Y.Y., Chiang, M.C., Dutton, R.A., Hayashi, K.M., Luders, E., Lopez, O.L., Aizenstein, H.J., Toga, A.W., Becker, J.T., Thompson, P.M.: Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors. IEEE Trans. Med. Imaging 27(1), 129–141 (2008)

    Article  Google Scholar 

  9. Lyttelton, O., Boucher, M., Robbins, S., Evans, A.C.: An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34(4), 1535–1544 (2007)

    Article  Google Scholar 

  10. MacDonald, D., Kabani, N., Avis, D., Evans, A.C.: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage 12(3), 340–356 (2000)

    Article  Google Scholar 

  11. Mazziotta, J.C., Toga, A.W., Evans, A., Fox, P., Lancaster, J.: A probabilistic atlas of the human brain: theory and rationale for its development, the International Consortium for Brain Mapping (ICBM). NeuroImage 2(2), 89–101 (1995)

    Article  Google Scholar 

  12. McCullagh, P., Nelder, J., McCullagh, M.C.: Generalized Linear Models. Chapman & Hall/CRC Press, London/Boca Raton (1989)

    Book  Google Scholar 

  13. Meek, C., Patel, J.M., Kasetty, S.: Oasis: an online and accurate technique for local-alignment searches on biological sequences. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29, pp. 910–921. VLDB Endowment, Lyon (2003)

    Google Scholar 

  14. Rettmann, M.E., Han, X., Xu, C., Prince, J.L.: Automated sulcal segmentation using watersheds on the cortical surface. NeuroImage 15(2), 329–344 (2002)

    Article  Google Scholar 

  15. Robbins, S.: Anatomical standardization of the human brain in Euclidean 3-space and on the cortical 2-manifold. PhD thesis, School of Computer Science, McGill University (2004)

    Google Scholar 

  16. Thompson, P.M., Toga, A.W.: A framework for computational anatomy. Comput. Vis. Sci. 5(1), 13–34 (2002)

    Article  Google Scholar 

  17. Thompson, P.M., Hayashi, K.M., De Zubicaray, G., Janke, A.L., Rose, S.E., Semple, J., Herman, D., Hong, M.S., Dittmer, S.S., Doddrell, D.M., et al.: Dynamics of gray matter loss in Alzheimer’s disease. J. Neurosci. 23(3), 994 (2003)

    Article  Google Scholar 

  18. Tosun, D., Rettmann, M.E., Han, X., Tao, X., Xu, C., Resnick, S.M., Pham, D.L., Prince, J.L.: Cortical surface segmentation and mapping. Neuroimage 23(Supplement 1), S108–S118 (2004)

    Article  Google Scholar 

  19. van Essen, D.C.: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. NeuroImage 28(3), 635–662 (2005)

    Article  Google Scholar 

  20. Worsley, K.J.: Local maxima and the expected Euler characteristic of excursion sets of χ 2, f and t fields. Adv. Appl. Probab. 26(1), 13–42 (1994)

    Article  MathSciNet  Google Scholar 

  21. Worsley, K.J., Andermann, M., Koulis, T., MacDonald, D., Evans, A.C.: Detecting changes in nonisotropic images. Hum. Brain Mapp. 8(2–3), 98–101 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Boucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Boucher, M., Evans, A. (2012). Local Statistics on Shape Diffeomorphisms Using a Depth Potential Function. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_11

Download citation

Publish with us

Policies and ethics