Abstract
Coherence-enhancing diffusion filtering is a striking application of the structure tensor concept in image processing. The technique deals with the problem of completion of interrupted lines and enhancement of flow-like features in images. The completion of line-like structures is also a major concern in diffusion tensor magnetic resonance imaging (DT-MRI). This medical image acquisition technique outputs a 3D matrix field of symmetric (3×3)-matrices, and it helps to visualize, for example, the nerve fibers in brain tissue. As any physical measurement DT-MRI is subjected to errors causing faulty representations of the tissue corrupted by noise and with visually interrupted lines or fibers.
In this paper we address that problem by proposing a coherence-enhancing diffusion filtering methodology for matrix fields. The approach is based on a generic structure tensor concept for matrix fields that relies on the operator-algebraic properties of symmetric matrices, rather than their channel-wise treatment of earlier proposals.
Numerical experiments with artificial and real DT-MRI data confirm the gap-closing and flow-enhancing qualities of the technique presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bigun, J.: Vision with Direction. Springer, Berlin (2006)
Bjornemo, M., Brun, A.: White matter fiber tracking diffusion tensor MRI. Master’s thesis, Linkøping University, Linkøping (2002)
Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Technical report 113, Department of Mathematics, Saarland University, Saarbrücken, Germany (2004)
Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for matrix-data: ordering versus PDE-based approach. Image Vis. Comput. 25(4), 496–511 (2007)
Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach for singular PDEs for the processing of matrix fields. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision: Proceedings of the 1st International Conference, SSVM 2007, Ischia, Italy, May–June 2007. Lecture Notes in Computer Science, vol. 4485, pp. 556–567. Springer, Berlin (2007)
Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to diffusion filtering of matrix-fields. Computing 81(2–3), 179–197 (2007)
Burgeth, B., Didas, S., Weickert, J.: A general structure tensor concept and coherence-enhancing diffusion filtering for matrix fields. In: Laidlaw, D.H., Weickert, J. (eds.) Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 305–323. Springer, Berlin (2009)
Campbell, J.S.W., Siddiqi, K., Vemuri, B.C., Pike, G.B.: A geometric flow for white matter fiber tract reconstruction. In: Proceedings IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 505–508. IEEE Computer Society Press, Los Alamitos (2002)
Chefd’Hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Constrained flows on matrix-valued functions: application to diffusion tensor regularization. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, May–June 2002. Lecture Notes in Computer Science, vol. 2350–2353, pp. 251–265. Springer, Berlin (2002)
Coulon, O., Alexander, D.C., Arridge, S.R.: A regularization scheme for diffusion tensor magnetic resonance images. In: Insana, M.F., Leahy, R.M. (eds.) Proceedings of the 17th International Conference on Information Processing in Medical Imaging, IPMI 2001, Davis, USA, 2001. Lecture Notes in Computer Science, vol. 2082, pp. 92–105. Springer, Berlin (2001)
Duits, R., Franken, E.M.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92(3), 231–264 (2011)
Fillard, P., Pennec, X., Arsigny, V., Ayache, N.: Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Trans. Med. Imaging 26(11) (2007)
Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of the ISPRS Intercomission Conference on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990). Corrected reprint of the 1985 original
McGraw, T., Vemuri, B.C., Chen, Y., Rao, M., Mareci, T.: DT-MRI denoising and neuronal fiber tracking. Med. Image Anal. 8(2), 95–111 (2004)
Schultz, T., Burgeth, B., Weickert, J.: Flexible segmentation and smoothing of DT-MRI fields through a customizable structure tensor. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) Advances in Visual Computing. Proceedings of the 2nd International Symposium, ISVC 2006, Lake Tahoe, NV, USA, November 6–8, 2006. Lecture Notes in Computer Science, vols. 4291–4292, pp. 454–464. Springer, Berlin (2006)
Tschumperlé, D., Deriche, R.: Regularization of orthonormal vector sets using coupled PDE’s. In: Proceedings 1st IEEE Workshop on Variational and Level Set Methods, pp. 3–10. IEEE Computer Society, Los Alamitos (2001)
Weickert, J.A.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner, Stuttgart (1998)
Weickert, J.A.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2–3), 111–127 (1999)
Weickert, J.: Design of Nonlinear Diffusion Filters. In: Jähne, B.J., Haußecker, H. (eds.) Computer Vision and Applications, pp. 439–458. Academic Press, San Diego (2000)
Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images. In: Nashed, M.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 251–268. AMS, Providence (2002)
Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin (2006)
Zhang, S., Demiralp, C., Laidlaw, D.H.: Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Trans. Vis. Comput. Graph. 9(4), 454–462 (2003)
Zhukov, L., Barr, A.H.: Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI. In: Proceedings IEEE Visualization 2002, pp. 387–394. IEEE Computer Society, Los Alamitos (2002)
Acknowledgements
We are grateful to Anna Vilanova i Bartrolí (Eindhoven University of Technology) and Carola van Pul (Maxima Medical Center, Eindhoven) for providing us with the DT-MRI data set and for discussing questions concerning data conversion. The original helix data is by courtesy of Gordon Kindlmann (University of Chicago).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag London Limited
About this chapter
Cite this chapter
Burgeth, B., Pizarro, L., Didas, S., Weickert, J. (2012). 3D-Coherence-Enhancing Diffusion Filtering for Matrix Fields. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_3
Download citation
DOI: https://doi.org/10.1007/978-1-4471-2353-8_3
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-2352-1
Online ISBN: 978-1-4471-2353-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)