Skip to main content

Social Haptic Interaction with Virtual Characters

  • Chapter
Immersive Multimodal Interactive Presence

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

Adding physicality to virtual environments is considered a prerequisite to achieve natural interaction behavior. While physical properties and laws can be built into virtual environments by means of physical engines, providing haptic feedback to the user requires appropriately designed and controlled haptic devices, as well as sophisticated haptic rendering algorithms. While in the past a variety of haptic rendering algorithms for the simulation of human-object interactions were developed, haptic interactions with a virtual character are still underinvestigated. Such kind of interactions, however, pose a number of new challenges compared to the rendering of human-object interactions as the human expects to interact with a character that shows human-like behavior, i.e., it should be able to estimate human intentions, to communicate intentions, and to adapt its behavior to its partner. On this account, algorithms for intention recognition, interactive path planning, control, and adaptation are required when implementing such interactive characters. In this chapter two different approaches for the design of interactive behavior are reviewed, an engineering-driven and a human-centred approach. Following the latter approach virtual haptic interaction partners are realized following the workflow record-replay-recreate. To demonstrate the validity of this approach it is applied to two prototypical application scenarios, handshaking and dancing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.immersence.info, 2011.

References

  1. Burdea, G.: Force and Touch Feedback for Virtual Reality. Wiley, New York (1996)

    Google Scholar 

  2. Martin, J., Savall, J.: Mechanisms for haptic torque feedback. In: Proc. of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 611–614 (2005)

    Chapter  Google Scholar 

  3. Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (1995)

    Google Scholar 

  4. Basdogan, C., Srinivasan, M.A.: Haptic rendering in virtual environments. In: Stanney, K.M. (ed.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 117–134. Lawrence Erlbaum Associates, Mahwah (2002)

    Google Scholar 

  5. Thompson, T.V. II, Johnson, D.E., Cohen, E.: Direct haptic rendering of sculptured models. In: Proceedings Symposium on Interactive 3D Graphics (1997)

    Google Scholar 

  6. Kim, L., Kyrikou, A., Sukhatme, G.S., Desbrun, M.: An implicit-based haptic rendering technique. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2002)

    Google Scholar 

  7. Okamura, A.M., Kuchenbecker, K.J., Mahvash, M.: Measurement-based modeling for haptic rendering. In: Haptic Rendering: Foundations, Algorithms, and Applications. AK Peters Series (2008)

    Google Scholar 

  8. Basdogan, C., Ho, C.H., Srinivasan, M.A.: A ray-based haptic rendering technique for displaying shape and texture of 3D objects in virtual environments. In: Dynamic Systems and Control Division (1997)

    Google Scholar 

  9. Otaduy, M.A., Lin, M.C.: Rendering of textured objects. In: Haptic Rendering: Foundations, Algorithms, and Applications. AK Peters Series (2008)

    Chapter  Google Scholar 

  10. Lin, M., Otaduy, M. (eds.): Haptic Rendering, Foundations, Algorithms, and Applications. AK Peters Series (2002)

    Google Scholar 

  11. Hirata, Y., Kosuge, K.: Distributed robot helpers handling a single object in cooperation with humans. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 458–463 (2000)

    Google Scholar 

  12. Rahman, M.M., Ikeura, R., Mizutani, K.: Control characteristics of two humans in cooperative task and its application to robot control. In: 26th Annual Conference of the IEEE Industrial Electronics Society, pp. 1773–1778 (2000)

    Google Scholar 

  13. Tsumigawa, T., Yokogawa, R., Hara, K.: Variable impedance control with regard to working process for man-machine cooperation-work system. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2001)

    Google Scholar 

  14. Tsumigawa, T., Yokogawa, R., Hara, K.: Variable impedance control with virtual stiffness for human-robot cooperative peg-in-hole task. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1075–1081 (2002)

    Google Scholar 

  15. Tsumigawa, T., Yokogawa, R., Hara, K.: Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. In: IEEE International Conference on Robotics and Automation, pp. 644–650 (2002)

    Google Scholar 

  16. Ikeura, R., Moriguchi, T., Mizutani, K.: Optimal variable impedance controller for a robot and its application to lifting an object with a human. In: IEEE International Workshop on Robot and Human Interactive Communication, pp. 500–505 (2002)

    Google Scholar 

  17. Duchain, V., Gosselin, C.M.: General model of human-robot cooperation using a novel velocity based variable impedance control. In: Worldhaptics, Tsukuba, Japan, pp. 446–451 (2007)

    Google Scholar 

  18. Arai, H., Takubo, T., Hayashibara, Y., Tanie, K.: Human-robot cooperative manipulation using a virtual nonholonomic constraint. In: IEEE Proc. of the International Conference on Robotics and Automation vol. 4, pp. 4063–4069 (2000). doi:10.1109/ROBOT.2000.845365

    Google Scholar 

  19. Maeda, Y., Hara, T., Arai, T.: Human-robot cooperative manipulation with motion estimation. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, pp. 2240–2245 (2001)

    Google Scholar 

  20. Takeda, T., Hirata, Y., Kosuge, K.: Dance step estimation method based on HMM for dance partner robot. IEEE Trans. Ind. Electron. 54(2), 699–706 (2007)

    Article  Google Scholar 

  21. Corteville, B., Aertbelien, E., Bruyninckx, H., de Schutter, J., van Brussel, H.: Human-inspired robot assistant for fast point-to-point movements. In: IEEE International Conf. on Robotics and Automation, Roma, Italy, pp. 3639–3644 (2007)

    Google Scholar 

  22. Evrard, P., Gribovskaya, E., Calinon, S., Billard, A., Kheddar, A.: Teaching physical collaborative tasks: Object-lifting case study with a humanoid. In: 9th IEEE-RAS International Conference on Humanoid Robots, pp. 399–404 (2009)

    Chapter  Google Scholar 

  23. Wojtara, T., Uchihara, M.M.H., Shimoda, S., Sakai, S., Fujimotor, H., Kimura, H.: Human-robot collaboration in precise positioning of a three-dimensional object. Automatica 45, 333–342 (2009)

    Article  MATH  Google Scholar 

  24. Rahman, M., Ikeura, R., Mizutani, K.: Cooperation characteristics of two humans in moving an object. Mach. Intell. Robot. Control 4, 43–48 (2002)

    Google Scholar 

  25. Reed, K.B., Peshkin, M., Hartmann, M.J., Patton, J., Vishton, P.M., Grabowecky, M.: Haptic cooperation between people, and between people and machines. In: Proceedings of the 2006 IEEE/RSJ Conference on Intelligent Robots and Systems, Beijing, China (2006)

    Google Scholar 

  26. Reed, K.B., Peshkin, M.A.: Physical collaboration of human-human and human-robot teams. IEEE Trans. Haptics 1, 108–120 (2008)

    Article  Google Scholar 

  27. Miossec, S., Kheddar, A.: Human motion in cooperative tasks: Moving object case study. In: Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics (2008)

    Google Scholar 

  28. Feth, D., Groten, R., Peer, A., Hirche, S., Buss, M.: Performance related energy exchange in haptic human-human interaction in a shared virtual object manipulation task. In: Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2009)

    Google Scholar 

  29. Groten, R., Feth, D., Goshy, H., Peer, A., Kenny, D.A., Buss, M.: Experimental analysis of dominance in haptic collaboration. In: The 18th International Symposium on Robot and Human Interactive Communication (2009)

    Google Scholar 

  30. Groten, R., Feth, F., Klatzky, R., Peer, A., Buss, M.: Efficiency analysis in a collaborative task with reciprocal haptic feedback. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  31. Wang, Z., Peer, A., Buss, M.: An HMM approach to realistic haptic human-robot interaction. In: Worldhaptics (2009)

    Google Scholar 

  32. Hölldampf, J., Peer, A., Buss, M.: Virtual partner for a haptic interaction task. In: Ritter, H., Sagerer, G., Dillmann, R., Buss, M. (eds.) Human Centered Robot Systems. Cognitive Systems Monographs, pp. 183–191. Springer, Berlin (2009)

    Chapter  Google Scholar 

  33. Kunii, Y., Hashimoto, H.: Tele-handshake using handshake device. In: Proceedings of the 21st IEEE International Conference on Industrial Electronics, Control, and Instrumentation, USA, vol. 1, pp. 179–182 (1995)

    Google Scholar 

  34. Pollard, N.S., Zordan, V.B.: Physically based grasping control from example. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer Animation, USA, pp. 311–318 (2005)

    Chapter  Google Scholar 

  35. Sato, T., Hashimoto, M., Tsukahara, M.: Synchronization based control using online design of dynamics and its application to human-robot interaction. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 652–657 (2007)

    Google Scholar 

  36. Yamato, Y., Jindai, M., Watanabe, T.: Development of a shake-motion leading model for human-robot handshaking. In: Proceedings of the SICE Annual Conference 2008, Japan, pp. 502–507 (2008)

    Chapter  Google Scholar 

  37. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: Proceedings of the 14th International Conference on Machine Learning (1997)

    Google Scholar 

  38. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Trajectory formation for imitation with nonlinear dynamical systems. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems Conf., vol. 2, pp. 752–757 (2001). doi:10.1109/IROS.2001.976259

    Google Scholar 

  39. Kormushev, P., Calinon, S., Caldwell, D.G.: Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Adv. Robot. 25(5), 581–603 (2010)

    Article  Google Scholar 

  40. Schmidts, A.M., Lee, D., Peer, A.: Imitation learning of human grasping skills from motion and force data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)

    Google Scholar 

  41. Solis, J., Marcheschi, S., Frisoli, A., Avizzano, C., Bergamasco, M.: Reactive robot system using a haptic interface: and active interaction to transfer skills from the robot to unskilled persons. Adv. Robot. 21(3–4), 267–291 (2007)

    Article  Google Scholar 

  42. Wang, Z., Giannopoulos, E., Slater, M., Peer, A., Buss, M.: Handshake: Realistic human-robot interaction in haptic enhanced virtual reality. Presence (2011, accepted)

    Google Scholar 

  43. Calinon, S., Evrard, P., Gribovskaya, E., Billard, A., Kheddar, A.: Learning collaborative manipulation tasks by demonstration using a haptic interface. In: 14th International Conference on Advanced Robotics (ICAR), Munich, June 2009

    Google Scholar 

  44. Wang, W., Hölldampf, J., Buss, M.: Design and performance of a haptic data acquisition glove. In: Proceedings of the 10th Annual International Workshop on Presence, Spain, pp. 349–357 (2007)

    Google Scholar 

  45. Wang, Z., Yuan, J., Buss, M.: Modelling of human haptic skill: a framework and preliminary results. In: Proceedings of the 17th IFAC World Congress, Korea, pp. 14761–14766 (2008)

    Google Scholar 

  46. Groten, R.: Haptic human-robot collaboration: How to learn from human dyads. PhD thesis, Technische Universität München (2011)

    Google Scholar 

  47. Hölldampf, J., Peer, A., Buss, M.: Synthesis of an interactive haptic dancing partner. In: Proc. IEEE RO-MAN, pp. 527–532 (2010). doi:10.1109/ROMAN.2010.5598616

    Google Scholar 

  48. Nakazawa, A., Nakaoka, S., Ikeuchi, K., Yokoi, K.: Imitating human dance motions through motion structure analysis. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems Conf., vol. 3, pp. 2539–2544 (2002). doi:10.1109/IRDS.2002.1041652

    Chapter  Google Scholar 

  49. Pullen, K., Bregler, C.: Motion capture assisted animation: texturing and synthesis. In: SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 501–508. ACM, New York (2002). doi:10.1145/566570.566608

    Chapter  Google Scholar 

  50. Gentry, S., Murray-Smith, R.: Haptic dancing: human performance at haptic decoding with a vocabulary. In: Proc. IEEE Int Systems, Man and Cybernetics Conf., vol. 4, pp. 3432–3437 (2003). doi:10.1109/ICSMC.2003.1244420

    Google Scholar 

  51. Kosuge, K., Hayashi, T., Hirata, Y., Tobiyama, R.: Dance partner robot -Ms DanceR-. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2003), vol. 4, pp. 3459–3464 (2003). doi:10.1109/IROS.2003.1249691

    Google Scholar 

  52. Hirata, Y., Hayashi, T., Takeda, T., Kosuge, K., Wang, Z.-d.: Step estimation method for dance partner robot “MS DanceR” using neural network. In: Proc. 2005 IEEE Int. Conf. Robotics and Biomimetics (ROBIO), pp. 523–528 (2005). doi:10.1109/ROBIO.2005.246322

    Chapter  Google Scholar 

  53. Takeda, T., Hirata, Y., Kosuge, K.: Dance partner robot cooperative motion generation with adjustable length of dance step stride based on physical interaction. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2007, pp. 3258–3263 (2007). doi:10.1109/IROS.2007.4399270

    Google Scholar 

  54. Unterhinninghofen, U., Schauss, T., Buss, M.: Control of a mobile haptic interface. In: Proc. IEEE Int. Conf. Robotics and Automation ICRA 2008, pp. 2085–2090 (2008). doi:10.1109/ROBOT.2008.4543514

    Google Scholar 

  55. Peer, A., Buss, M.: A new admittance type haptic interface for bimanual manipulations. IEEE/ASME Trans. Mechatron. 13(4), 416–428 (2008)

    Article  Google Scholar 

  56. Degallier, S., Santos, C.P., Righetti, L., Ijspeert, A.: Movement generation using dynamical systems: a humanoid robot performing a drumming task. In: Proc. 6th IEEE-RAS Int Humanoid Robots Conf., pp. 512–517 (2006). doi:10.1109/ICHR.2006.321321

    Chapter  Google Scholar 

  57. Gribovskaya, E., Billard, A.: Learning nonlinear multi-variate motion dynamics for real-time position and orientation control of robotic manipulators. In: Proc. 9th IEEE-RAS Int. Conf. Humanoid Robots Humanoids 2009, pp. 472–477 (2009). doi:10.1109/ICHR.2009.5379536

    Chapter  Google Scholar 

  58. Reed, K.B., Patton, J., Peshkin, M.: Replicating human-human physical interaction. In: Proc. IEEE Int Robotics and Automation Conf., pp. 3615–3620 (2007). doi:10.1109/ROBOT.2007.364032

    Chapter  Google Scholar 

  59. Lee, D., Ott, C., Nakamura, Y.: Mimetic communication with impedance control for physical human-robot interaction. In: Proc. IEEE Int. Conf. Robotics and Automation ICRA ’09, pp. 1535–1542 (2009). doi:2009.5152857

    Google Scholar 

  60. Okada, M., Tatani, K., Nakamura, Y.: Polynomial design of the nonlinear dynamics for the brain-like information processing of whole body motion. In: Proc. IEEE Int. Conf. Robotics and Automation ICRA’02, vol. 2, pp. 1410–1415 (2002). doi:10.1109/ROBOT.2002.1014741

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the ImmerSence project within the 6th Framework Programme of the European Union, FET—Presence Initiative, contract number IST-2006-027141, see also www.immersence.info.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wang, Z., Hölldampf, J., Peer, A., Buss, M. (2012). Social Haptic Interaction with Virtual Characters. In: Peer, A., Giachritsis, C. (eds) Immersive Multimodal Interactive Presence. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-2754-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2754-3_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2753-6

  • Online ISBN: 978-1-4471-2754-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics