Skip to main content

Psychological Experiments in Haptic Collaboration Research

  • Chapter
  • 842 Accesses

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

This chapter discusses the role of psychological experiments when designing artificial partners for haptic collaboration tasks, such as joint object manipulation. After an introduction, which motivates this line of research and provides according definitions, the first part of this chapter presents theoretical considerations on psychological experiments in the general design process of interactive artificial partners. Furthermore, challenges related to the specific research interest in haptic collaboration are introduced. Next, two concrete examples of psychological experiments are given: (a) A study where we examine whether dominance behavior depends on the interacting partner. The obtained results are discussed in relation to design guidelines for artificial partners. (b) An experiment which focuses on the evaluation of different configurations of the implemented artificial partner. Again the focus is on experimental challenges, especially measurements. In the conclusion the two roles of experiments in the design process of artificial partners for haptic tasks are contrasted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Mental models are an internal representations of the external world, including the collaborating partner. Mental models allow to explain and predict a system state and to recognize the relationship between system components and events [25]. Recently mental models receive increasing attention in interaction design processes [20, 26, 27].

  2. 2.

    For a general overview on experimental design and statistical analysis please refer to [17, 4855].

References

  1. Hoffman, G., Breazeal, C.: Robots that work in collaboration with people. In: AAAI Fall Symposium on the Intersection of Cognitive Science and Robotics (2004)

    Google Scholar 

  2. Bratman, M.: Shared cooperative activity. Philos. Rev. 101(2), 327–341 (1992)

    Article  Google Scholar 

  3. Grosz, B., Sidner, C.: Plans for discourse. In: Intentions in Communications, pp. 417–444. MIT Press, Cambridge (1990)

    Google Scholar 

  4. Kanno, T., Nakata, K., Furuta, K.: A method for team intention inference. Int. J. Hum.-Comput. Stud. 58, 394–413 (2003)

    Article  Google Scholar 

  5. Johannsen, G., Averbukh, E.A.: Human performance models in control. In: Proceedings of International Conference on Systems, Man and Cybernetics, 1993. Systems Engineering in the Service of Humans (1993)

    Google Scholar 

  6. Grosz, B.: Collaborative systems. AI Mag. 17, 67–85 (1996)

    Google Scholar 

  7. Tomasello, M., Carpenter, M., Call, J., Behne, T., Moll, H.: Understanding and sharing intentions: The origins of cultural cognition. Behav. Brain Sci. 28, 675–735 (2005)

    Google Scholar 

  8. Meulenbroek, R., Bosga, J., Hulstijn, M., Miedl, S.: Joint-action coordination in transferring objects. Exp. Brain Res. 180(2), 333–343 (2007)

    Article  Google Scholar 

  9. Schubö, A., Vesper, C., Wiesbeck, M., Stork, S.: Movement coordination in applied human-human and human-robot interaction. In: HCI and Usability for Medicine and Health Care, pp. 143–154. Springer, Berlin (2007)

    Chapter  Google Scholar 

  10. Sebanz, N., Bekkering, H., Knoblich, G.: Joint action—Bodies and minds moving together. Trends Cogn. Sci. 10(2), 70–76 (2003)

    Article  Google Scholar 

  11. Welsh, T.: When 1+1=1: The unification of independent actors revealed through joint Simon effects in crossed and uncrossed effector conditions. Hum. Mov. Sci. 28(6), 726–737 (2009)

    Article  MathSciNet  Google Scholar 

  12. Nudehi, S., Mukherjee, R., Ghodoussi, M.: A shared-control approach to haptic interface design for minimally invasive telesurgical training. IEEE Trans. Control Syst. Technol. 13, 588–592 (2005)

    Article  Google Scholar 

  13. Esen, H., Sachsenhauser, A., Yano, K., Buss, M.: A multi-user virtual training system concept and objective assessment of trainings. In: The 16th IEEE International Symposium on Robot and Human Interactive Communication (Ro-Man) (2007)

    Google Scholar 

  14. Bettini, A., Marayong, P., Lang, S., Okamura, A., Hager, G.: Vision-assisted control for manipulation using virtual fixtures. IEEE Trans. Robot. 20(6), 953–966 (2004)

    Article  Google Scholar 

  15. Kragic, D., Marayong, P., Li, M., Okamura, A., Hager, G.: Human-machine collaborative systems for microsurgical applications. Int. J. Robot. Res. 24(9), 731–741 (2005)

    Article  Google Scholar 

  16. Butler-Bowdom, T.: 50 Psychology Classics: Who We Are, How We Think, What We Do; Insight and Inspiration from 50 Key Books. Nicholas Brealey, London (2006)

    Google Scholar 

  17. Shaughnessy, J.: Research Methods in Psychology, 8th edn. Mcgraw-Hill College, Boston (2008)

    Google Scholar 

  18. Wundt, W.: Grundzüge der physiologischen Psychologie (Principles of Physiological Psychology). VDM Verlag Dr. Müller, Saarbrücken (1874), Auflage von 2007

    Google Scholar 

  19. Butler, J., Holden, K., Lidwell, W.: Universal Principles of Design: 100 Ways to Enhance Usability, Influence Perception, Increase Appeal, Make Better Design Decisions, and Teach Through Design. Rockport, Gloucester (2007)

    Google Scholar 

  20. Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human-Computer Interaction. Wiley, New York (2007)

    Google Scholar 

  21. Rahman, M., Ikeura, R., Mizutani, K.: Cooperation characteristics of two humans in moving an object. Mach. Intell. Robot. Control 2(4), 43–48 (2002)

    Google Scholar 

  22. Reed, K., Peshkin, M., Hartmann, M., Patton, J., Vishton, P., Grabowecky, M.: Haptic cooperation between people, and between people and machines. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2006)

    Google Scholar 

  23. Corteville, B., Aertbelien, E., Bruyninckx, H., De Schutter, J., Van Brussel, H.: Human-inspired robot assistant for fast point-to-point movements. In: IEEE International Conference on Robotics and Automation (2007)

    Google Scholar 

  24. Evrard, P., Kheddar, A.: Homotopy switching model for dyad haptic interaction in physical collaborative tasks. In: Proc. of the Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 45–50 (2009)

    Chapter  Google Scholar 

  25. Wilson, J., Rutherford, A.: Mental models: Theory and application in human factors. Hum. Factors 31(6), 617–663 (1989)

    Google Scholar 

  26. Cooper, A., Reitman, R., Cronin, D.: About Face 3: The Essentials of Interaction Design. Wiley, New York (2007)

    Google Scholar 

  27. Galitz: The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and Techniques. Wiley, New York (2007)

    Google Scholar 

  28. Wolpert, D., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 358(1431), 593–602 (2003)

    Article  Google Scholar 

  29. Reed, K.B., Peshkin, M.: Physical collaboration of human-human and human-robot teams. IEEE Trans. Haptics 1, 108–120 (2008)

    Article  Google Scholar 

  30. Feth, D., Tran, B., Groten, R., Peer, A., Buss, M.: Shared-control paradigms in multi-operator-single-robot teleoperation. In: Cognitive Systems Monographs, pp. 53–62. Springer, Berlin (2009)

    Google Scholar 

  31. Basdogan, C., Ho, C.H., Srinivasan, M.: An experimental study on the role of touch in shared virtual environments. ACM Trans. Comput.-Hum. Interact. 7, 443–460 (2000)

    Article  Google Scholar 

  32. Sallnäs, E.L., Rassmus-Gröhn, K., Sjöström, C.: Supporting presence in collaborative environments by haptic force feedback. ACM Trans. Comput.-Hum. Interact. 7(4), 461–476 (2000)

    Article  Google Scholar 

  33. Schauss, T., Groten, R., Peer, A., Buss, M.: Evaluation of a coordinating controller for improved task performance in multi-user teleoperation. In: Haptics: Generating and Perceiving Tangible Sensations. Lecture Notes in Computer Science, vol. 6191, pp. 240–247 (2010)

    Chapter  Google Scholar 

  34. Sallnäs, E.L.: Improved precision in mediated collaborative manipulation of objects by haptic force feedback. In: Proceedings of the First International Workshop on Haptic Human-Computer Interaction (2001)

    Google Scholar 

  35. Groten, R., Feth, D., Klatzky, R., Peer, A., Buss, M.: Efficiency analysis in a collaborative task with reciprocal haptic feedback. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  36. Groten, R., Feth, D., Peer, A., Buss, M.: Shared decision making in a collaborative task with reciprocal haptic feedback—an efficiency-analysis. In: IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  37. Feth, D., Groten, R., Peer, A., Hirche, S., Buss, M.: Performance related energy exchange in haptic human-human interaction in a shared virtual object manipulation task. In: Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2009)

    Google Scholar 

  38. Pan, P., Lynch, K., Peshkin, M., Colgate, J.E.: Human interaction with passive assistive robots. In: IEEE 9th International Conference on Rehabilitation Robotics (2005)

    Google Scholar 

  39. Schroeder, R., Steed, A., Axelsson, A.S., Heldal, I., Abelin, A., Wideström, J., Nilsson, A., Slater, M.: Collaborating in networked immersive spaces: as good as being there together? Comput. Graph. 25(5), 781–788 (2001)

    Article  Google Scholar 

  40. Kashy, D., Snyder, D.: Measurement and data analytic issues in couples research. Psychol. Assess. 7(3), 338–348 (1995)

    Article  Google Scholar 

  41. Griffin, D., Gonzalez, R.: Correlational analysis of dyad-level data in the exchangeable case. Psychol. Bull. 118, 430–439 (1995)

    Article  Google Scholar 

  42. Kenny, D.: The design and analysis of social-interaction research. Annu. Rev. Psychol. 47, 59–86 (1996)

    Article  Google Scholar 

  43. Maguire, M.C.: Treating the dyad as the unit of analysis: A primer on three analytic approaches. J. Marriage Fam. 61(1), 213–223 (1999)

    Article  Google Scholar 

  44. Kenny, D., Mohr, C., Levesque, M.: A social relations variance partitioning of dyadic behavior. Psychol. Bull. 127(1), 128–141 (2001)

    Article  Google Scholar 

  45. DeCoster, J.: Using anova to examine data from groups and dyads (2002). http://www.stat-help.com/notes.html

  46. Griffin, D., Gonzalez, R.: Models of dyadic social interaction. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 358(1431), 573–581 (2003)

    Article  Google Scholar 

  47. Kenny, D., Kashy, D., Cook, W.: Dyadic Data Analysis. The Guilford Press, New York (2006)

    Google Scholar 

  48. Field, A., Hole, G.: How to Design and Report Experiments. Sage, London (2002)

    Google Scholar 

  49. Tabachnick, B., Fidell, L.: Experimental Designs Using ANOVA. Brooks/Cole, Pacific Grove (2006)

    Google Scholar 

  50. Tabachnick, B., Fidell, L.: Using Multivariate Statistics. Pearson Education, Upper Saddle River (2006)

    Google Scholar 

  51. Howell, D.: Fundamental Statistics for the Behavioral Sciences. Wadsworth, Belmont (2007)

    Google Scholar 

  52. Tullis, T., Albert, B.: Measuring the User Experience. Morgan Kaufman, San Mateo (2008)

    Google Scholar 

  53. Rubin, J., Chisnell, D.: Handbook of Usability Zesting: How to Plan, Design, and Conduct Effective Tests, 2nd edn. Wiley, New York (2008)

    Google Scholar 

  54. Field, A.: Discovering Statistics Using SPSS. Sage, London (2009)

    Google Scholar 

  55. Groten, R., Peer, A., Buss, M.: Interpretation of results in experimental haptic interaction research. In: Workshop on Haptic Human-Robot Interaction. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2009)

    Google Scholar 

  56. Groten, R., Feth, D., Goshy, H., Peer, A., Kenny, D., Buss, M.: Experimental analysis of dominance in haptic collaboration. In: The 18th International Symposium on Robot and Human Interactive Communication (2009)

    Google Scholar 

  57. Rogers-Millar, L., Millar, F.: Domineeringness and dominance: A transactional view. Hum. Commun. Res. 5, 238–246 (1979)

    Article  Google Scholar 

  58. Burgoon, J., Johnson, M., Koch, P.: The nature and measurement of interpersonal dominance. Commun. Monogr. 65, 308–335 (1998)

    Article  Google Scholar 

  59. Glynn, S., Henning, R.: Can teams outperform individuals in a simulated dynamic control task. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting (2000)

    Google Scholar 

  60. Glynn, S., Fekieta, R., Henning, R.A.: Use of force-feedback joysticks to promote teamwork in virtual teleoperation. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting (2001)

    Google Scholar 

  61. Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. 13, 257–266 (1983)

    Google Scholar 

  62. Bond, C., Lashley, B.: Round-robin analysis of social interaction: Exact and estimated standard errors. Psychometrika 61(2), 303–311 (1996)

    Article  MATH  Google Scholar 

  63. Snijeders, T., Kenny, D.: The social relations model for family data: A multilevel approach. Pers. Relatsh. 6(4), 471–486 (2005)

    Article  Google Scholar 

  64. Gelman, A., Hill, J. (eds.): Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  65. Kenny, D.A.: Soremo [computer program] (1994). http://davidakenny.net/srm/srmp.htm

  66. Wojtara, T., Uchihara, M., Murayama, H., Shimoda, S., Sakai, S., Fujimoto, H., Kimura, H.: Human-robot cooperation in precise positioning of a flat object. In: Proceedings of the 17th World Congress The International Federation of Automatic Control (2008)

    Google Scholar 

  67. Wojtara, T., Uchihara, M., Murayama, H., Shimodaa, S., Sakaic, S., Fujimotoc, H., Kimura, H.: Human-robot collaboration in precise positioning of a three-dimensional object. Automatica 45(2), 333–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Feth, D., Groten, G., Peer, A., Buss, M.: Haptic human-robot collaboration: Comparison of robot partner implementations in terms of human-likeness and task performance. Presence 20(2), 173–189 (2011)

    Article  Google Scholar 

  69. Hinds, P., Roberts, T., Jones, H.: Whose job is it anyway? A study of human-robot interaction in a collaborative task. Hum.-Comput. Interact. 19(1), 151–181 (2004)

    Article  Google Scholar 

  70. Ikeura, R., Inooka, H., Mizutani, K.: Subjective evaluation for maneuverability of a robot cooperating with humans. J. Robot. Mechatron. 14(5), 514–519 (2002)

    Google Scholar 

  71. Wang, Z., Lu, J., Peer, A., Buss, M.: Influence of vision and haptics on plausibility of social interaction in virtual reality scenarios. In: Haptics: Generating and Perceiving Tangible Sensations. Proceedings of International Conference. Part II. EuroHaptics 2010, Amsterdam, 8–10 July 2010. Lecture Notes in Computer Science, pp. 172–177. Springer, Berlin (2010)

    Chapter  Google Scholar 

  72. Karniel, A., Nisky, I., Avraham, A., Peles, B.C., Levy-Tzedek, S.: A Turing-like handshake test for motor intelligence. In: Haptics: Generating and Perceiving Tangible Sensations. Proceedings of EuroHaptics 2010 International Conference. Part I, Amsterdam, 8–10 July 2010. Lecture Notes in Computer Science, vol. 6192, pp. 197–204. Springer, Berlin (2010)

    Chapter  Google Scholar 

  73. Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 364(1535), 3549–3557 (2009)

    Article  Google Scholar 

  74. McRuer, D., Jex, H.: A review of quasi-linear pilot models. IEEE Trans. Hum. Factors Electron. HFE-8(3), 231–249 (1967)

    Article  Google Scholar 

  75. Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Google Scholar 

  76. Kazerooni, H., Guo, J.: Human extenders. J. Dyn. Syst. Meas. Control 115(2B), 281–290 (1993)

    Article  Google Scholar 

  77. Rahman, M., Ikeura, R., Mitzutani, K.: Investigation of the impedance characteristic of human arm for development of robots to cooperate with humans. JSME Int. J. Ser. C 45(2), 510–518 (2002)

    Article  Google Scholar 

  78. Duchaine, V., Gosselin, C.: General model of human-robot cooperation using a novel velocity based variable impedance control. In: Proc. of the 2nd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 446–451 (2007)

    Chapter  Google Scholar 

  79. Duchaine, V., Gosselin, C.: Safe, stable and intuitive control for physical human-robot interaction. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 3383–3388 (2009)

    Google Scholar 

  80. Feth, D., Groten, R., Peer, A., Buss, M.: Control-theoretic model of haptic human-human interaction in a pursuit tracking task. In: Proc. of the 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 1106–1111 (2009)

    Google Scholar 

  81. Jagacinski, R., Flach, J.: Control Theory for Humans—Quantitative Approaches to Modeling Performance. Lawrence Erlbaum Associates, New Jersey (2003)

    Google Scholar 

  82. Gentry, S., Wall, S., Oakley, I., Murray-Smith, R.: Got rhythm? Haptic-only lead and follow dancing. In: Proc. of EuroHaptics, pp. 481–488 (2003)

    Google Scholar 

  83. Allison, R., Zacher, J., Wang, D., Shu, J.: Effects of network delay on a collaborative motor task with telehaptic and televisual feedback. In: Proc. of the ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in Industry, pp. 375–381 (2004)

    Google Scholar 

  84. Khademian, B., Hashtrudi-Zaad, K.: Performance issues in collaborative haptic training. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 3257–3262 (2007)

    Chapter  Google Scholar 

  85. Thurstone, L.L.: A law of comparative judgment. Psychol. Rev. 34(107), 4 (1927)

    Google Scholar 

  86. Gescheider, G.: Psychophysics: Method, Theory, and Application. Lawrence Erlbaum Associates, Hillsdale (1985)

    Google Scholar 

  87. Feil-Seifer, D., Skinner, K., Mataric, M.: Benchmarks for evaluating socially assistive robotics. Interact. Stud. 8(17), 423–439 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the ImmerSence project within the 6th Framework Programme of the European Union, FET—Presence Initiative, contract number IST-2006-027141, see also www.immersence.info.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaela Groten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Groten, R., Feth, D., Peer, A., Buss, M. (2012). Psychological Experiments in Haptic Collaboration Research. In: Peer, A., Giachritsis, C. (eds) Immersive Multimodal Interactive Presence. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-2754-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2754-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2753-6

  • Online ISBN: 978-1-4471-2754-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics