Skip to main content

Data-Driven Visuo-Haptic Rendering of Deformable Bodies

  • Chapter
Book cover Immersive Multimodal Interactive Presence

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

  • 836 Accesses

Abstract

Our current research focuses on the investigation of new algorithmic paradigms for the data-driven generation of sensory feedback. The key notion is the collection of all relevant data characterizing an object as well as the interaction during a recording stage via multimodal sensing suites. The recorded data are then processed in order to convert the raw signals into abstract descriptors. This abstraction then also enables us to provide feedback for interaction which has not been observed before. We have developed a first integrated prototype implementation of the envisioned data-driven visuo-haptic acquisition and rendering system. It allows users to acquire the geometry and appearance of an object. In this chapter we outline the individual components and provide details on necessary extensions to also accommodate interaction scenarios involving deformable objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoever, R., Harders, M., Szekely, G.: Data-driven haptic rendering of visco-elastic effects. In: IEEE Haptic Symposium, pp. 201–208 (2008)

    Google Scholar 

  2. Hoever, R., Kosa, G., Szekely, G., Harders, M.: Data-driven haptic rendering-from viscous fluids to visco-elastic solids. IEEE Trans. Haptics 2, 15–27 (2009)

    Article  Google Scholar 

  3. Hoever, R., Di Luca, M., Szekely, G., Harders, M.: Computationally efficient techniques for data-driven haptic rendering. In: World Haptics, pp. 39–44 (2009)

    Google Scholar 

  4. Weise, T., Leibe, B., Van Gool, L.: Fast 3D scanning with automatic motion compensation. In: CVPR07, pp. 1–8 (2007)

    Google Scholar 

  5. Weise, T., Wismer, T., Leibe, B., Van Gool, L.: In-hand scanning with online loop closure. In: IEEE International Workshop on 3-D Digital Imaging and Modeling (2009)

    Google Scholar 

  6. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  7. Scharstein, D., Szeliski, R.: http://vision.middlebury.edu/stereo/

  8. Klaus, A., Sormann, M., Karner, K.F.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: ICPR, pp. 15–18 (2006)

    Google Scholar 

  9. Blais, F.: Review of 20 years of range sensor development. In: Videometric VII, Proceedings of SPIE Electronic Imaging, vol. 5013, pp. 62–76 (2003)

    Google Scholar 

  10. Lange, R., Seitz, P., Biber, A., Schwarte, R.: Time-of-flight range imaging with a custom solid state image sensor. Laser Metrol. Inspect. 3823(1), 180–191 (1999)

    Google Scholar 

  11. Batlle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: A survey. Pattern Recognit. 31(7), 963–982 (1998)

    Article  Google Scholar 

  12. Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognit. 37(4), 827–849 (2004)

    Article  MATH  Google Scholar 

  13. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. Comput. Vis. Pattern Recognit. 01, 195–202 (2003)

    Google Scholar 

  14. Wust, C., Capson, D.W.: Surface profile measurement using color fringe projection. Mach. Vis. Appl. V4(3), 193–203 (1991)

    Article  Google Scholar 

  15. Zhang, L., Curless, B., Seitz, S.M.: Spacetime stereo: Shape recovery for dynamic scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 367–374 (2003)

    Google Scholar 

  16. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 296–302 (2005)

    Article  Google Scholar 

  17. Koninckx, T.P., Griesser, A., Van Gool, L.J.: Real-time range scanning of deformable surfaces by adaptively coded structured light. In: 3DIM, pp. 293–301 (2003)

    Google Scholar 

  18. Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: The 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 24–36 (2002)

    Chapter  Google Scholar 

  19. MacLean, K.: The ‘haptic camera’: A technique for characterizing and playing back haptic properties of real environments. In: Proc. of ASME Dynamic Systems and Control Devision, vol. 58, pp. 459–467 (1996)

    Google Scholar 

  20. Greenish, S., Hayward, V., Steffen, T., Chial, V., Okamura, A.: Measurement, analysis, and display of haptic signals during surgical cutting. Presence 11, 626–651 (2002)

    Article  Google Scholar 

  21. Okamura, A., Webster, R., Nolin, J., Johnson, K., Jafry, H.: The haptic scissors: Cutting in virtual environments. In: Proc. of the ICRA, vol. 1, pp. 828–833 (2003)

    Google Scholar 

  22. Edmunds, T., Pai, D.K.: Perceptual rendering for learning haptic skills. In: IEEE Haptic Symposium, pp. 225–230 (2008)

    Google Scholar 

  23. Colton, M., Hollerbach, J.: Reality-based haptic force models of buttons and switches. In: Proc. of the ICRA, pp. 497–502 (2007)

    Google Scholar 

  24. Colton, M., Hollerbach, J.: Haptic models of an automotive turn-signal switch: Identification and playback results. In: Proc. of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 243–248 (2007)

    Chapter  Google Scholar 

  25. Kry, P., Pai, D.: Interaction capture and synthesis. ACM Trans. Graph. 25, 872–880 (2006)

    Article  Google Scholar 

  26. Andrews, S., Lang, J.: Interactive scanning of haptic textures and surface compliance. In: Proc. of the International Conference on 3-D Digital Imaging and Modeling, pp. 99–106 (2007)

    Chapter  Google Scholar 

  27. Pai, D.K., Rizun, P.: The WHaT: a wireless haptic texture sensor. In: IEEE Haptic Symposium, pp. 3–9 (2003)

    Google Scholar 

  28. Richard, C., Cutkosky, M., MacLean, K.: Friction identification for haptic display. In: Proc. of the ASME Dynamic Systems and Control Division, vol. 67, pp. 327–334 (1999)

    Google Scholar 

  29. Kuchenbecker, K., Fiene, J., Niemeyer, G.: Event-based haptics and acceleration matching: Portraying and assessing the realism of contact. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 381–387 (2005)

    Chapter  Google Scholar 

  30. Kuchenbecker, K., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. In: IEEE Transactions on Visualization and Computer Graphics, vol. 12, pp. 219–230 (2006)

    Google Scholar 

  31. Pai, D., Lang, J., Lloyd, J., Woodham, R.: ACME, a telerobotic active measurement facility. In: Experimental Robotics VI, vol. 250, pp. 391–400 (2000)

    Chapter  Google Scholar 

  32. Pai, D., van den Doel, K., James, D., Lang, J., Lloyd, J., Richmond, J., Yau, S.: Scanning physical interaction behavior of 3D objects. In: ACM SIGGRAPH 2001 Conference Proc., pp. 87–96 (2001)

    Google Scholar 

  33. Sedef, M., Samur, E., Basdogan, C.: Visual and haptic simulation of linear viscoelastic tissue behavior based on experimental data. In: Haptic Symposium, pp. 201–208 (2006)

    Google Scholar 

  34. Samur, E., Sedef, M., Basdogan, C., Avtan, L., Duzgun, O.: A robotic indenter for minimally invasive characterization of soft tissues. In: Proc. of the Computer Assisted Radiology and Surgery, vol. 1281, pp. 713–718 (2005)

    Google Scholar 

  35. Mahvash, M., Hayward, V.: Haptic simulation of a tool in contact with a nonlinear deformable body. In: Surgical Simulation and Soft Tissue Deformation, vol. 2673, pp. 311–320 (2003)

    Chapter  Google Scholar 

  36. Mahvash, M., Hayward, V.: High fidelity haptic synthesis of contact with deformable bodies. IEEE Comput. Graph. Appl. 24, 48–55 (2004)

    Article  Google Scholar 

  37. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03, pp. 587–594 (2003)

    Chapter  Google Scholar 

  38. Amberg, B.: Optimal step nonrigid ICP algorithms for surface registration. In: CVPR ’07 (2007)

    Google Scholar 

  39. Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. Comput. Graph. Forum 27(5) (2008)

    Google Scholar 

  40. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: High-resolution capture for modeling and animation. In: ACM Annual Conference on Computer Graphics, pp. 548–558 (2004)

    Google Scholar 

  41. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14, 213–230 (2008)

    Article  Google Scholar 

  42. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20, 475–487 (2004)

    Article  Google Scholar 

  43. Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 22–31 (2004)

    Chapter  Google Scholar 

  44. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  45. Decarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vis. 38, 99–127 (2000)

    Article  MATH  Google Scholar 

  46. Weise, T., Leibe, B., Van Gool, L.: Accurate and robust registration for in-hand modeling. In: Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  47. Chang, W., Zwicker, M.: Automatic registration for articulated shapes. In: Proceedings of the Symposium on Geometry Processing, pp. 1459–1468 (2008)

    Google Scholar 

  48. Iske, A., Arnold, V.I.: Multiresolution Methods in Scattered Data Modelling. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the ImmerSence project within the 6th Framework Programme of the European Union, FET—Presence Initiative, contract number IST-2006-027141, see also www.immersence.info.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Harders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Harders, M., Hoever, R., Pfeifer, S., Weise, T. (2012). Data-Driven Visuo-Haptic Rendering of Deformable Bodies. In: Peer, A., Giachritsis, C. (eds) Immersive Multimodal Interactive Presence. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-2754-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2754-3_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2753-6

  • Online ISBN: 978-1-4471-2754-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics