Skip to main content

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Trademark image searching is potentially one of the most important application areas for automated content-based image retrieval (CBIR) techniques. There are many large and growing collections of trademark images in electronic form. The task of maintaining manual indexes to these image collections is becoming increasingly onerous. And there is a paramount need for accurate and reliable searching, since the images can be of major commercial significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. US Patent and Trademark Office: Basic Facts About Registering a Trademark US Patent and Trademark Office, Washington, DC, 1995. (http://www.uspto.gov/web/offices/tac/doc/basic/basic-facts.html).

    Google Scholar 

  2. World Intellectual Property Organization: International Classification of the Figurative Elements of Marks (Vienna Classification), Fourth Edition, ISBN 92-805-0728-1. World Intellectual Property Organization, Geneva, 1998.

    Google Scholar 

  3. Alwis, S and Austin, J, “A Novel Architecture for Trademark Image Retrieval Systems”, presented at The Challenge of Image Retrieval research workshop, Newcastle upon Tyne, 1998. Available in BCS electronic Workshops in Computing series at http://www.ewic.org.uk/ewic/workshop/view.cfm/CIR-98.

    Google Scholar 

  4. Alwis, S and Austin, J, “Trademark Image Retrieval Using Multiple Features”, presented at CIR-99: The Challenge of Image Retrieval, Newcastle, 1999.

    Google Scholar 

  5. Beckmann, N, “The R*-Tree: An Efficient And Robust Access Method for Points and Rectangles”, ACM SIGMOD Rec, 19(2), pp. 322–331, 1990.

    Article  Google Scholar 

  6. Callan, JP, Croft, WB, and Harding, SM, “The INQUERY Retrieval System”, 3rd International Conference on Database and Expert System applications, pp. 78-83, 1992.

    Google Scholar 

  7. Canny, J, “A Computational Approach to Edge Detection”, IEEE Trans Patt Anal Mach Intell, 8, pp. 679–698, 1986.

    Article  Google Scholar 

  8. Carson C, Belongie, S, Greenspan, H, and Malik, J, “Region-Based Image Querying”, IEEE Workshop on Content-Based Access of Image and Video Libraries, San Juan, Puerto Rico, 1997.

    Google Scholar 

  9. Cesarmi, F, Francesconi, E, Gori, M, Marinai, S, Sheng, JQ, and Soda, G, “A Neural-Based Architecture for Spot-Noisy Logo Recognition”, 4th International Conference on Document Analysis and Recognition, Ulm, pp. 175-179, 1997.

    Google Scholar 

  10. Chang, SF, Chen W, and Sundaram, H, “Semantic Visual Templates: Linking Visual Features to Semantics”, IEEE International Conference on Image Processing (ICIP’98), Chicago, Illinois, pp. 531-53, 1998.

    Google Scholar 

  11. Chang, SK, Shi, QY, and Yan, CW, “Iconic Indexing by 2-D Strings”, IEEE Trans Patt Anal Mach Intell, 9(3), pp. 413–427, 1987.

    Article  Google Scholar 

  12. Cleverdon, CW and Keen, EM, “Factors Determining the Performance of Indexing Systems”, Cranfield College of Aeronautics, Cranfield, UK, 1966.

    Google Scholar 

  13. Cortelazzo, G, Mian, GA, Vezzi, G, and Zamperoni, P, “Trademark Shape Description by String-Matching Techniques”, Patt Recogn, 27(8), pp. 1005–1018, 1994.

    Article  Google Scholar 

  14. Del Bimbo, A and Pala, P, “Visual Image Retrieval by Elastic Matching of User Sketches”, IEEE Trans Patt Anal Mach Intell, 19(2), pp. 121–132, 1997.

    Article  Google Scholar 

  15. Doermann, D, Rivlin, E, and Weiss, I, “Applying Algebraic and Differential Invariants for Logo Recognition”, Mach Vision Applic, 9, pp. 73–86, 1996.

    Google Scholar 

  16. Dudani, SA, Breeding, KJ, and McGhee, RB, “Aircraft Identification by Moment Invariants”, IEEE Trans Computers, 26, pp. 39–45, 1977.

    Article  Google Scholar 

  17. Eakins, JP, “Design Criteria for a Shape Retrieval System”, Computers Indust, 21, pp. 167–184, 1993.

    Article  Google Scholar 

  18. Eakins, JP, Shields, K, and Boardman, JM, “ARTISAN — a Shape Retrieval System Based on Boundary Family Indexing”, in Storage and Retrieval for Image and Video Databases IV, Proc SPIE 2670, pp. 17-28, 1996.

    Google Scholar 

  19. Eakins, JP, Graham, ME, and Boardman, JM, “Evaluation of a Trademark Retrieval System”, 19th BCS IRSG Research Colloquium on Information Retrieval, Robert Gordon University, Aberdeen, 1997. Available in BCS electronic Workshops in Computing series (http://www.ewic.org.uk/ewic/workshop/view.cfm/IRR-97).

    Google Scholar 

  20. Eakins, JP, Boardman, JM, and Graham, ME, “Similarity Retrieval of Trademark Images”, IEEE Multimed, 5(2), pp. 53–63, 1998.

    Article  Google Scholar 

  21. Eakins, JP and Graham, M.E, “Content-Based Image Retrieval: A Report to the JISC Technology Applications Programme”, JISC Technology Applications Programme Report 39, 1999.

    Google Scholar 

  22. Ellis, D, “The Dilemma of Measurement in Information Retrieval Research”, J Am Soc Inform Sci, 47, pp. 23–36, 1996.

    Article  Google Scholar 

  23. Faloutsos, C, Barber, R, Flickner, M, Hafner, J, Niblack, W, and Equitz, W, “Efficient and Effective Querying by Image Content”, J Intell Inform Syst, 3, pp. 231–262, 1994.

    Article  Google Scholar 

  24. Forsyth, DA, Malik, J, Fleck, M, Leung, T, Belongie, S, Carson, C, and Bregler, C, “Finding Pictures of Objects in Large Collections of Images”, in Digital Image Access and Retrieval: 1996 Clinic on Library Applications of Data Processing (Heidorn, P and Sandore, B, eds), Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign, pp. 118-139, 1997.

    Google Scholar 

  25. Francesconi, E, Frasconi, P, Gori, M, Marinai, S, Sheng, JQ, Soda, G, and Sperduti, A, “Logo Recognition by Recursive Neural Networks”, 2nd International Workshop on Graphics Recognition: Algorithms and Systems, Lecture Notes in Computer Science, 1389, pp. 104–117, 1998.

    Article  Google Scholar 

  26. Freeman, H, “Computer Processing of Line-Drawing Images”, ACM Comput Surv, 6(1), pp. 57–97, 1974.

    Article  MATH  Google Scholar 

  27. Goldmeier, E, “Similarity in Visually Perceived Forms”, Psychol Issues 8(1), pp. 1–135, 1972.

    Google Scholar 

  28. Gudivada, VN and Raghavan, VV, “Design and Evaluation of Algorithms for Image Retrieval by Spatial Similarity”, ACM Trans Inform Syst, 13(2), pp. 115–144, 1995.

    Article  Google Scholar 

  29. Hou, YT, Hsu, A, Liu, P, and Chiu, MY, “A Content-Based Indexing Technique Using Relative Geometry Features”, in Image Storage and Retrieval Systems, Proc SPIE 1662, pp. 59-68, 1992.

    Google Scholar 

  30. Hu, MK, “Visual Pattern Recognition by Moment Invariants”, IRE Trans Inform Theory, IT-8, pp. 179-187, 1962.

    Google Scholar 

  31. Idris, F and Panchanathan, S, “Review of Image and Video Indexing Techniques”, J Visual Commun Image Represent 8(2), pp. 146–166, 1997.

    Article  Google Scholar 

  32. Jain, AK, Zhong, Y, and Lakshmanan, S, “Object Matching Using Deformable Templates”, IEEE Trans Patt Anal Mach Intell, 18(3), pp. 267–277, 1996.

    Article  Google Scholar 

  33. Jain, AK and Vailaya A, “Image retrieval Using Color and Shape”, Patt Recogn, 29(8), pp. 1233–1244, 1996.

    Article  Google Scholar 

  34. Jain, AK and Vailaya, A, “Shape-Based Retrieval: A Case Study With Trademark Image Databases” Patt Recogn, 31(9), pp. 1369–1390, 1998.

    Article  Google Scholar 

  35. Kato, T, “Database Architecture for Content-Based Image Retrieval”, in Image Storage and Retrieval Systems (Jambardino, A and Niblack, W, eds), Proc SPIE 2185, pp. 112-123, 1992.

    Google Scholar 

  36. Kim, YS and Kim, WY, “Content-Based Trademark Retrieval System Using a Visually Salient Feature”, Image Vision Comput, 16, pp. 931–939, 1998.

    Article  Google Scholar 

  37. Kim, YS, Kim, Y, Kim, W, Kim, M, “Development of Content-Based Trademark Retrieval System on the World-Wide Web”, ETRI J, 21(1), pp. 39–53, 1999.

    Article  Google Scholar 

  38. Kurniawati, R, Jin, J, and Shepherd, J, “The SS+ Tree: An Improved Index Structure for Similarity Searches in High-Dimensional Feature Space”, in Storage and Retrieval for Image and Video Databases V, Proc. SPIE 3022, pp. 110-120, 1997.

    Google Scholar 

  39. Lee, CS, Ma, W and Zhang, H, “Information Embedding Based on Users’ Relevance Feedback for Image Retrieval”, in Multimedia Storage and Archiving Systems IV, Proc. SPIE 3846, pp. 294-304, 1999.

    Google Scholar 

  40. Levine, MD, Vision in Man and Machine, ch. 10, McGraw-Hill, New York, 1985.

    Google Scholar 

  41. Liang, KC and Kuo, C, “Implementation and Performance Evaluation of a Progressive Image Retrieval System”, in Storage and Retrieval for Image and Video Databases VI, Proc. SPIE 3312, pp. 37-48, 1998.

    Google Scholar 

  42. Lin, KI, Jagadish, H, Faloutsos, C, “The TV-Tree: an Index Structure for High Dimensional Data”, J Very Large Databases, 3(4), pp. 517–549, 1994.

    Article  Google Scholar 

  43. Liu, F and Picard, RW, “Periodicity, Directionality and Randomness: Wold Features for Image Modelling and Retrieval”, IEEE Trans Patt Anal Mach Intell, 18(7), pp. 722–733, 1996.

    Article  Google Scholar 

  44. Ma, WY and Manjunath, BS, “A Texture Thesaurus for Browsing Large Aerial Photographs”, J Am Soc Inform Sci, 49(7), pp. 633–648, 1998.

    Article  Google Scholar 

  45. Manjunath, BS and Ma, WY, “Texture Features for Browsing and Retrieval of Large Image Data”, IEEE Trans Patt Anal Mach Intell, 18, pp. 837–842, 1996.

    Article  Google Scholar 

  46. Mehrotra, R and Gary, JE, “Similar-Shape Retrieval in Shape Data Management”, IEEE Computer, 28(9), pp. 57–62, 1995.

    Article  Google Scholar 

  47. Mehtre, BM, Kankanhalliet, MS, and Lee, FV, “Shape Measures for Content-Based Image Retrieval: A Comparison”, Inform Process Manag, 33(3), pp. 319–337, 1997.

    Article  Google Scholar 

  48. Oliva, A, and Torrlba, AB, “Global Semantic Classification of Scenes Using Power Spectrum Templates”, presented at CIR-99, the Challenge of Image Retrieval, Newcastle, February, 1999.

    Google Scholar 

  49. Peng, HL and Chen, SY, “Trademark Shape Recognition Using Closed Contours”, Patt Recogn Lett, 18, pp. 791–803, 1997.

    Article  Google Scholar 

  50. Pentland, A, Picard, R, and Sclaroff, S, “Photobook: Content-Based Manipulation of Image Databases”, Int J Computer Vision, 18(3), pp. 233–254, 1996.

    Article  Google Scholar 

  51. Rauber, TW and Steiger, AS, “Shape Description by UNL Fourier Features — an Application to Handwritten Character Recognition”, presented at 11th IAPR International Conference on Pattern Recognition, The Hague, 1992.

    Google Scholar 

  52. Ravela, S and Manmatha, R, “Retrieving Images by Appearance”, IEEE International Conference on Computer Vision (ICCV98), Bombay, India, pp. 608-613, 1998.

    Google Scholar 

  53. Ravela, S and Manmatha, R, “On Computing Global Similarity in Images”, IEEE Workshop on Applications of Computer Vision (WACV98), Princeton, NJ, pp. 82-87, 1998.

    Google Scholar 

  54. Ravela, S and Manmatha, R, “Multi-Modal Retrieval of Trademark Images Using Global Similarity”, Internal Report, University of Massachusetts at Amherst, 1999.

    Google Scholar 

  55. Ren, M, Eakins, JP, Briggs, P, “Human Perception of Trademark Images: Implications for Retrieval System Design”, in Multimedia Storage and Archiving Systems IV, Proc SPIE 3846, pp. 114-125, 1999.

    Google Scholar 

  56. Rui, Y, Huang, TS, and Mehrota, S, “Relevance Feedback Techniques in Interactive Content-Based Image Retrieval”, in Storage and Retrieval for Image and Video Databases VI, Proc SPIE 3312, pp. 25-36, 1997.

    Google Scholar 

  57. Rui, Y, Huang, TS, Chang, SF, “Image Retrieval: Current Techniques, Promising Directions, and open issues”, J Visual Commun Image Represent, 10(1), pp. 39–62, 1999.

    Article  Google Scholar 

  58. Sarkar, S and Boyer, KL, “A Computational Structure for Preattentive Perceptual Organization: Graphical Enumeration and Voting Methods”, IEEE Trans Syst Man Cybern, 24, pp. 246–267, 1994.

    Article  Google Scholar 

  59. Scassellati, B, Alexopolous S, and Flickner, M, “Retrieving Images by 2-D Shape: A Comparison of Computation Methods with Human Perceptual Judgements”, in Storage and Retrieval for Image and Video Databases II (Niblack, WR and Jain, RC, eds), Proc SPIE 2185, pp. 2-14, 1994.

    Google Scholar 

  60. Smith, JR and Chang, SF, “Querying by Color Regions Using the VisualSEEk Content-Based Visual Query System”, Intelligent Multimedia Information Retrieval (Maybury, ed), AAAI Press, Menlo Park, CA, pp. 23-41, 1997.

    Google Scholar 

  61. Sparck Jones, K, “Reflections on TREC”, Inform Process Manag, 31(3), pp. 291–314, 1995.

    Article  Google Scholar 

  62. Squire, D, and Pun, T, “A Comparison of Human and Machine Assessments of Image Similarity for the Organization of Image Databases”, 10th Scandinavian Conference on Image Analysis, Lappeenranta, Finland, pp. 51-58, 1997.

    Google Scholar 

  63. Swain, MJ and Ballard, DH, “Color Indexing”, Int J Computer Vision, 7(1), pp. 11–32, 1991.

    Article  Google Scholar 

  64. Tamura, H, Mori, S, and Yamawaki, Y, “Textural Features Corresponding to Visual Perception”, IEEE Trans Syst Man Cybern, 8(6), pp. 460–472, 1978.

    Article  Google Scholar 

  65. Teague, MR, “Image Analysis by the General Theory of Moments”, J Opt Soc Am, 70, pp. 920–930, 1980.

    Article  MathSciNet  Google Scholar 

  66. Teh, CH and Chin, RT, “Image Analysis by Methods of Moments”, IEEE Trans Patt Anal Mach Intell, 10(4), pp. 496–513, 1988.

    Article  MATH  Google Scholar 

  67. Tversky, A, “Features of Similarity”, Psychol Rev, 84(4), pp. 327–352, 1977.

    Article  Google Scholar 

  68. Umetani, Y and Taguchi, K, “Discrimination of General Shapes by Psychological Feature Properties”, Dig Syst Indust Autom, 1(2–3), pp. 179–198, 1982.

    Google Scholar 

  69. Vellaikal, A and Kuo, C, “Hierarchical Clustering Techniques for Image Database Organization and Summarization”, in Multimedia Storage and Archiving Systems III, Proc SPIE 3527, pp. 68-79, 1998.

    Google Scholar 

  70. Vleugels, J and Veitkamp, R, “Efficient Image Retrieval Through Vantage Objects”, presented at VISUAL99: 3rd International Conference on Visual Information and Information Systems, Lecture Notes in Computer Science 1614, pp. 769-776, 1999.

    Google Scholar 

  71. Wertheimer, M, “Untersuchungen zur Lehre von der Gestalt”, Psychologische Forschung, 4, pp. 301–350, 1923; Translated as “Laws of organization in perceptual forms”, in A Sourcebook of Gestalt Psychology, Humanities Press, New York, 1950.

    Article  Google Scholar 

  72. Whalen, TE, Lee, ES, and Safayeni, F, “The Retrieval of Images from Image Databases: Trademarks”, Behav Inform Technol, 14(1), pp. 3–13, 1995.

    Article  Google Scholar 

  73. Witkin, AP and Tenenbaum, JM, “On the Role of Structure in Vision”, in Human and Machine Vision, pp. 481–543, Academic Press, New York, 1983.

    Google Scholar 

  74. Wu, JK, Lam, CP, Mehtre, BM, Gao, YJ, Narasimhalu, A, “Content-Based Retrieval for Trademark Registration”, Multimed Tools Applic, 3, pp. 245–267, 1996.

    Article  Google Scholar 

  75. Zahn, CT and Roskies, CZ, “Fourier Descriptor for Plane Closed Curves”, IEEE Trans Computers, C-21, pp. 269–281, 1972.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London

About this chapter

Cite this chapter

Eakins, J.P. (2001). Trademark Image Retrieval. In: Lew, M.S. (eds) Principles of Visual Information Retrieval. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-3702-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3702-3_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-868-3

  • Online ISBN: 978-1-4471-3702-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics