Skip to main content

NPR in the Wild

  • Chapter
  • First Online:
Image and Video-Based Artistic Stylisation

Part of the book series: Computational Imaging and Vision ((CIVI,volume 42))

Abstract

During the early years of computer graphics, the results were arguably not as realistic as the intended goal set forth. However, it was not until sometime later that non-realism was accepted as a goal worthwhile pursuing. Since then, NPR has matured considerably and found uses in numerous applications, ranging from movies and television, production tools, and games, to novelty and casual creativity apps on mobile devices. This chapter presents examples from each of these categories within their historical and applied context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As such, their work is closer related to physical modeling and simulation than NPR.

  2. 2.

    For technical details on stippling, refer to Chap. 3.

  3. 3.

    Multiple screens, commonly rotated relative to one another and with slightly varying grid spacing, are used to reproduce color photographs.

  4. 4.

    Consumer GPUs only became available in the late 1990s and were limited to a fixed function pipeline. General GPU accelerated image processing operations via fragment shaders were introduced in the OpenGL 2.0 specification, in late 2004.

  5. 5.

    Random and pseudo-random artifacts are a popular NPR mechanism to simulate natural uncertainty or manual jitter. But since such randomness is extrinsic to the scene, special care must be taken to ensure temporal coherence during animation. Consequently, a number of works are dedicated to this topic [5, 6, 24].

  6. 6.

    For pseudo-code of their implementation, refer to NVidia’s “GPU Gems 2” [37], which is also available online.

  7. 7.

    http://www.gotfuturama.com/Information/Articles/3dani.dhtml.

  8. 8.

    http://www.olm.co.jp/rd/technology/tools/?lang=en.

  9. 9.

    Team Fortress 2 (Valve, 2007) also uses stylized shading, but opts for a more customized look based on early 20th century commercial illustration, in addition to heavily exaggerated characters and carefully crafted color palettes [32].

  10. 10.

    Of course, the maxim “garbage-in →garbage-out” still applies. In general, most NPR algorithms work better with higher contrast images than with lower contrast images. As such, a tone-mapping or normalization pre-processing stage can be used to improve the input to many NPR algorithms. Similarly, bilateral filtering or similar edge-preserving smoothing operations may be used to reduce sensor and other noise before further NPR processing is applied (see also Chap. 5).

  11. 11.

    Some may find this statement objectionable. For alternative views, the interested reader may search the web for “Computational Creativity”.

References

  1. Anjyo, K.i., Hiramitsu, K.: Stylized highlights for cartoon rendering and animation. IEEE Comput. Graph. Appl. 23(4), 54–61 (2003)

    Article  Google Scholar 

  2. Anjyo, K.i., Wemler, S., Baxter, W.: Tweakable light and shade for cartoon animation. In: Proceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering, NPAR ’06, pp. 133–139. ACM, New York (2006)

    Chapter  Google Scholar 

  3. Appel, A.: The notion of quantitative invisibility and the machine rendering of solids. In: Proceedings of the 1967 22nd National Conference, ACM ’67, pp. 387–393. ACM, New York (1967)

    Chapter  Google Scholar 

  4. Barla, P., Thollot, J., Markosian, L.: X-toon: an extended toon shader. In: Proceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering, NPAR ’06, pp. 127–132. ACM, New York (2006)

    Chapter  Google Scholar 

  5. Bénard, P., Bousseau, A., Thollot, J.: Dynamic solid textures for real-time coherent stylization. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, pp. 121–127. ACM, New York (2009)

    Chapter  Google Scholar 

  6. Bénard, P., Lagae, A., Vangorp, P., Lefebvre, S., Drettakis, G., Thollot, J.: A dynamic noise primitive for coherent stylization. Comput. Graph. Forum 29(4), 1497–1506 (2010)

    Article  Google Scholar 

  7. Bregler, C., Loeb, L., Chuang, E., Deshpande, H.: Turning to the masters: motion capturing cartoons. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, pp. 399–407. ACM, New York (2002)

    Chapter  Google Scholar 

  8. Chen, M.: For some grown-ups, playing with legos is a serious business (2011). http://goo.gl/vFUX4

  9. Coleman, P., Singh, K.: Ryan: rendering your animation nonlinearly projected. In: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering, NPAR ’04, pp. 129–156. ACM, New York (2004)

    Chapter  Google Scholar 

  10. Corrêa, W.T., Jensen, R.J., Thayer, C.E., Finkelstein, A.: Texture mapping for cel animation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 435–446. ACM, New York (1998)

    Chapter  Google Scholar 

  11. Daniels, E.: Deep canvas in Disney’s Tarzan. In: ACM SIGGRAPH 99 Conference Abstracts and Applications, SIGGRAPH ’99, p. 200. ACM, New York (1999)

    Chapter  Google Scholar 

  12. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. ACM Trans. Graph. 21(3), 769–776 (2002)

    Article  Google Scholar 

  13. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. ACM Trans. Graph. 22(3), 848–855 (2003)

    Article  Google Scholar 

  14. Gooch, B., Sloan, P.P.J., Gooch, A., Shirley, P., Riesenfeld, R.: Interactive technical illustration. In: Proceedings of the 1999 Symposium on Interactive 3D Graphics, I3D ’99, pp. 31–38. ACM, New York (1999)

    Google Scholar 

  15. Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20(6), 623–629 (1971)

    Article  MATH  Google Scholar 

  16. Haeberli, P.: Paint by numbers: abstract image representations. In: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’90, pp. 207–214. ACM, New York (1990)

    Chapter  Google Scholar 

  17. Ho, S.N., Komiya, R.: Real time loose and sketchy rendering in hardware. In: Proceedings of the 20th Spring Conference on Computer Graphics, SCCG ’04, pp. 83–88. ACM, New York (2004)

    Chapter  Google Scholar 

  18. Igarashi, Y., Igarashi, T.H.: A drawing editor for designing stencils. IEEE Comput. Graph. Appl. 30, 8–14 (2010)

    Article  Google Scholar 

  19. Interrante, V., Fuchs, H., Pizer, S.: Enhancing transparent skin surfaces with ridge and valley lines. In: Proceedings of the 6th Conference on Visualization ’95 (VIS ’95), p. 52. IEEE Comput. Soc., Los Alamitos (1995)

    Google Scholar 

  20. Johnston, S.F.: Lumo: illumination for cel animation. In: Proceedings of the 2nd International Symposium on Non-photorealistic Animation and Rendering, NPAR ’02, pp. 45–ff. ACM, New York (2002)

    Chapter  Google Scholar 

  21. Judd, T., Durand, F., Adelson, E.: Apparent ridges for line drawing. ACM Trans. Graph. 26(3), 19 (2007)

    Article  Google Scholar 

  22. Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C., Davidson, P.L., Webb, M., Hughes, J.F., Finkelstein, A.: WYSIWYG NPR: drawing strokes directly on 3D models. ACM Trans. Graph. 21(3), 755–762 (2002)

    Article  Google Scholar 

  23. Kang, H., Lee, S., Chui, C.: Flow-based image abstraction. IEEE Trans. Vis. Comput. Graph. 15(1), 62–76 (2009)

    Article  Google Scholar 

  24. Kass, M., Pesare, D.: Coherent noise for non-photorealistic rendering. ACM Trans. Graph. 30(4), 30 (2011)

    Article  Google Scholar 

  25. Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided image stippling. Comput. Graph. Forum 27(4), 1209–1216 (2008)

    Article  Google Scholar 

  26. Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering. In: Proc. EG UK Theory and Practice of Computer Graphics, pp. 51–58 (2008)

    Google Scholar 

  27. Lake, A., Marshall, C., Harris, M., Blackstein, M.: Stylized rendering techniques for scalable real-time 3D animation. In: Proceedings of the 1st International Symposium on Non-photorealistic Animation and Rendering, NPAR ’00, pp. 13–20. ACM, New York (2000)

    Chapter  Google Scholar 

  28. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 407–414. ACM/Addison-Wesley, New York/Reading (1997)

    Chapter  Google Scholar 

  29. Luft, T., Kobs, F., Zinser, W., Deussen, O.: Watercolor illustrations of CAD data. In: International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging, pp. 57–63. Eurographics Association, Geneva (2008)

    Google Scholar 

  30. Markosian, L., Kowalski, M.A., Goldstein, D., Trychin, S.J., Hughes, J.F., Bourdev, L.D.: Real-time nonphotorealistic rendering. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 415–420. ACM/Addison-Wesley, New York/Reading (1997)

    Chapter  Google Scholar 

  31. Mello, V.B., Jung, C.R., Walter, M.: Virtual woodcuts from images. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, GRAPHITE ’07, pp. 103–109. ACM, New York (2007)

    Chapter  Google Scholar 

  32. Mitchell, J., Francke, M., Eng, D.: Illustrative rendering in Team Fortress 2. In: Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering, NPAR ’07, pp. 71–76. ACM, New York (2007)

    Chapter  Google Scholar 

  33. Mizuno, S., Okada, M., Toriwaki, J.: An interactive designing system with virtual sculpting and virtual woodcut printing. Comput. Graph. Forum 18(3), 183–194 (1999)

    Article  Google Scholar 

  34. Nienhaus, M., Döllner, J.: Sketchy drawings. In: Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, AFRIGRAPH ’04, pp. 73–81. ACM, New York (2004)

    Chapter  Google Scholar 

  35. Ostromoukhov, V.: Digital facial engraving. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 417–424. ACM/Addison-Wesley, New York/Reading (1999)

    Chapter  Google Scholar 

  36. Petrović, L., Fujito, B., Williams, L., Finkelstein, A.: Shadows for cel animation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 511–516. ACM/Addison-Wesley, New York/Reading (2000)

    Chapter  Google Scholar 

  37. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation (GPU Gems). Addison-Wesley Professional, Reading (2005)

    Google Scholar 

  38. Popescu, V., Rosen, P., Adamo-Villani, N.: The graph camera. ACM Trans. Graph. 28(5), 158 (2009)

    Article  Google Scholar 

  39. Raskar, R., Cohen, M.: Image precision silhouette edges. In: Proceedings of the 1999 Symposium on Interactive 3D Graphics, I3D ’99, pp. 135–140. ACM, New York (1999)

    Google Scholar 

  40. Richens, P.: The Piranesi system for interactive rendering. In: Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures, pp. 381–398. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  41. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. SIGGRAPH Comput. Graph. 24(4), 197–206 (1990)

    Article  Google Scholar 

  42. Schumann, J., Strothotte, T., Laser, S., Raab, A.: Assessing the effect of non-photorealistic rendered images in CAD. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Common Ground, CHI ’96, pp. 35–41. ACM, New York (1996)

    Chapter  Google Scholar 

  43. Secord, A.: Weighted Voronoi stippling. In: Proceedings of the 2nd International Symposium on Non-photorealistic Animation and Rendering, NPAR ’02, pp. 37–43. ACM, New York (2002)

    Chapter  Google Scholar 

  44. Son, M., Lee, Y., Kang, H., Lee, S.: Structure grid for directional stippling. Graph. Models 73(3), 74–87 (2011)

    Article  Google Scholar 

  45. Sýkora, D., Dingliana, J., Collins, S.: LazyBrush: flexible painting tool for hand-drawn cartoons. Comput. Graph. Forum 28(2), 599–608 (2009)

    Article  Google Scholar 

  46. Todo, H., Anjyo, K., Igarashi, T.: Stylized lighting for cartoon shader. Comput. Animat. Virtual Worlds 20(2–3), 143–152 (2009)

    Article  Google Scholar 

  47. Winkenbach, G., Salesin, D.H.: Computer-generated pen-and-ink illustration. In: Proc. of ACM SIGGRAPH, vol. 94, pp. 91–100 (1994)

    Chapter  Google Scholar 

  48. Winnemöller, H.: XDoG: advanced image stylization with eXtended difference-of-Gaussians. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering, NPAR ’11, pp. 147–156. ACM, New York (2011)

    Chapter  Google Scholar 

  49. Winnemöller, H., Bangay, S.: Geometric approximations towards free specular comic shading. Comput. Graph. Forum 21(3), 309–316 (2002)

    Article  Google Scholar 

  50. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans. Graph. 25(3), 1221–1226 (2006)

    Article  Google Scholar 

  51. Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDoG: an eXtended difference-of-Gaussians compendium including advanced image stylization. Comput. Graph. 36(6), 740–753 (2012)

    Article  Google Scholar 

  52. Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL PRogramming GUide: THe OFficial Guide to LEarning OpenGL, Version 1.2, 3rd edn. Addison-Wesley Longman, Reading (1999)

    Google Scholar 

  53. Wood, D.N., Finkelstein, A., Hughes, J.F., Thayer, C.E., Salesin, D.H.: Multiperspective panoramas for cel animation. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 243–250. ACM/Addison-Wesley, New York/Reading (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Winnemöller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Winnemöller, H. (2013). NPR in the Wild. In: Rosin, P., Collomosse, J. (eds) Image and Video-Based Artistic Stylisation. Computational Imaging and Vision, vol 42. Springer, London. https://doi.org/10.1007/978-1-4471-4519-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4519-6_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4518-9

  • Online ISBN: 978-1-4471-4519-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics