Abstract
This chapter will first provide an introduction to information retrieval (IR) in general, before briefly explaining the research field of music information retrieval (MIR). Hereafter, we will discuss why and how social media mining (SMM) techniques can be beneficially employed in the context of MIR. More precisely, motivations for the common MIR tasks of music similarity computation, music popularity estimation, and auto-tagging musicwill be provided, and the current state-of-the-art in employing SMM techniques to these three tasks will be elaborated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
CDDBis a web-based album identification service that returns, for a given unique disc identifier, meta-data like artist and album name, tracklist, or release year. This service is offered in a commercial version operated by Gracenote [38] as well as in an open source implementation named freeDB [36].
- 2.
It is not clear whether the four mentioned publications make use of exactly the same data set. In any case, the authors emphasise that they only extract meta-data from OpenNap, but do not download any files.
- 3.
In the meantime, last.fmhas extended its API with a Geo.getTopArtistsfunction that returns the top-played artists in a particular country.
References
Aucouturier, J.-J., Pachet, F., Sandler, M.: “The way it sounds”: timbre models for analysis and retrieval of music signals. IEEE Trans. Multimed. 7(6), 1028–1035 (2005)
Baccigalupo, C., Plaza, E., Donaldson, J.: Uncovering affinity of artists to multiple genres from social behaviour data. In: Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR), Philadelphia (2008)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval – The Concepts and Technology Behind Search,2nd edn. Pearson, Harlow (2011)
Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Lüke, K.-H., Schwaiger, R.: InCarMusic: context-aware music recommendations in a car. In: International Conference on Electronic Commerce and Web Technologies (EC-Web), Toulouse (2011)
Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)
Berenzweig, A., Logan, B., Ellis, D.P., Whitman, B.: A large-scale evaluation of acoustic and subjective music similarity measures. In: Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR), Baltimore (2003)
Blanco, R., Lioma, C.: Graph-based term weighting for information retrieval. Inf. Retr. 15(1), 54–92 (2012)
Büttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. MIT, Cambridge (2010)
Casey, M.A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-based music information retrieval: current directions and future challenges. Proc. IEEE 96, 668–696 (2008)
Celma, O.: Music Recommendation and Discovery – The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Berlin (2010)
Celma, O., Lamere, P.: ISMIR 2007 tutorial: music recommendation. http://mtg.upf.edu/~ocelma/MusicRecommendationTutorial-ISMIR2007. Accessed Dec 2007. September 23–27 2007
Cohen, W.W., Fan, W.: Web-collaborative filtering: recommending music by crawling the web. WWW9/Comput. Netw. 33(1–6), 685–698 (2000)
Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90), 297–301 (1965)
Coviello, E., Chan, A.B., Lanckriet, G.: Time series models for semantic music annotation. IEEE Trans. Audio Speech Lang. Process. 19(5), 1343–1359 (2011)
Cunningham, S.J., Downie, J.S., Bainbridge, D.: “The pain, the pain”: modelling music information behavior and the songs we hate. In: Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR), London (2005)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 391–407 (1990)
Downie, J.S.: The scientific evaluation of music information retrieval systems: foundations and future. Comput. Music J. 28, 12–23 (2004)
Ellis, D.P., Whitman, B., Berenzweig, A., Lawrence, S.: The quest for ground truth in musical artist similarity. In: Proceedings of 3rd International Conference on Music Information Retrieval (ISMIR), Paris (2002)
Geleijnse, G., Schedl, M., Knees, P.: The quest for ground truth in musical artist tagging in the social web era. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)
Gouyon, F., Herrera, P., Gomez, E., Cano, P., Bonada, J., Loscos, A., Amatriain, X., Serra, X.: Content processing of music audio signals. In: Polotti, P., Roccheso, D. (eds.) Sound to Sense, Sense to Sound: A State-of-the-Art in Sound and Music Computing, pp. 83–160. Logos Verlag, Berlin GmbH (2008)
Grace, J., Gruhl, D., Haas, K., Nagarajan, M., Robson, C., Sahoo, N.: Artist ranking through analysis of on-line community comments. In: Proceedings of the 17th ACM International World Wide Web Conference (WWW 2008), Bejing (2008)
Grossman, D.A., Frieder, O.: Information Retrieval: Algorithms and Heuristics. Kluwer International Series on Information Retrieval. Springer, Dordrecht (2004)
http://developer.echonest.com/docs/method/get\_hotttnesss. Accessed Jan 2010
http://developer.echonest.com/docs/method/get\_top\_hottt\_artists. Accessed Jan 2010
http://echonest.com. Accessed Feb 2012
http://en.wikipedia.org/wiki/Billboard\_Hot\_100. Accessed May 2009
http://last.fm. Accessed Jan 2012
http://music.strands.com. Accessed Nov 2009
http://www.allmusic.com. Accessed Jan 2010
http://www.artofthemix.org. Accessed Feb 2008
http://www.bandmetrics.com. Accessed May 2010
http://www.bigchampagne.com. Accessed May 2010
http://www.exalead.com. Accessed Aug 2010
http://www.facebook.com. Accessed Feb 2012
http://www.freebase.com. Accessed Jan 2010
http://www.freedb.org. Accessed Feb 2008
http://www.google.com. Accessed Mar 2010
http://www.gracenote.com. Accessed Feb 2008
http://www.ip2location.com. Accessed Mar 2010
http://www.myspace.com. Accessed Nov 2009
http://www.spotify.com. Accessed Feb 2012
http://www.twitter.com. Accessed Jan 2012
http://www.youtube.com. Accessed Feb 2012
Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)
Jones, K.S., Walker, S.S., Robertson, S.E.: A probabilistic model of information retrieval: development and comparative experiments. Inf. Process. Manag. 36, 779–808 (2000)
Kim, J.H., Tomasik, B., Turnbull, D.: Using artist similarity to propagate semantic information. In: Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR), Kobe (2009)
Knees, P., Pampalk, E., Widmer, G.: Artist classification with web-based data. In: Proceedings of the 5th International Symposium on Music Information Retrieval (ISMIR), Barcelona, pp. 517–524 (2004)
Knees, P., Schedl, M., Pohle, T., Widmer, G.: An innovative three-dimensional user interface for exploring music collections enriched with meta-information from the web. In: Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara (2006)
Koenigstein, N., Shavitt, Y.: Song ranking based on piracy in peer-to-peer networks. In: Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009), Kobe (2009)
Koenigstein, N., Shavitt, Y., Tankel, T.: Spotting out emerging artists using geo-aware analysis of P2P query strings. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Las Vegas (2008)
Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30, 3rd edn. Springer, Berlin (2001)
Lanckriet, G., Turnbull, D., Barrington, L.: Five approaches to collecting tags for music. In: Proceedings of the 9th International Society for Music Information Retrieval Conference (ISMIR), Philadelphia (2008)
Law, E., von Ahn, L.: Input-agreement: a new mechanism for collecting data using human computation games. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems (CHI), Boston, pp. 1197–1206 (2009)
Law, E., von Ahn, L., Dannenberg, R., Crawford, M.: Tagatune: a game for music and sound annotation. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)
Lee, J.H.: Analysis of user needs and information features in natural language queries seeking user information. J. Am. Soc. Inf. Sci. Technol. (JASIST) 61, 1025–1045 (2010)
Levy, M., Sandler, M.: A semantic space for music derived from social tags. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)
Li, T., Ogihara, M., Tzanetakis, G. (eds.): Music Data Mining. CRC/Chapman Hall, Boca Raton (2011)
Logan, B., Ellis, D.P., Berenzweig, A.: Toward evaluation techniques for music similarity. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR): Workshop on the Evaluation of Music Information Retrieval Systems, Toronto (2003)
Luhn, H.P.: A statistical approach to mechanized encoding and searching of literary information. IBM J. 1, 309–317 (1957)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Statistics, vol. I, pp. 281–297. University of California Press, Berkeley/Los Angeles (1967)
Mandel, M.I., Ellis, D.P.: A Web-based game for collecting music metadata. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)
Mandel, M.I., Ellis, D.P.W.: A web-based game for collecting music metadata. J. New Music Res. 37(2), 151–165 (2008)
Mandel, M.I., Pascanu, R., Eck, D., Bengio, Y., Aiello, L.M., Schifanella, R., Menczer, F.: Contextual tag inference. ACM Trans. Multimed. Comput. Commun. Appl. 7S(1), 32:1–32:18 (2011)
McFee, B., Lanckriet, G.: The natural language of playlists. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami (2011)
Miotto, R., Barrington, L., Lanckriet, G.: Improving auto-tagging by modeling semantic co-occurrences. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht (2010)
Pachet, F., Westerman, G., Laigre, D.: Musical data mining for electronic music distribution. In: Proceedings of the 1st International Conference on Web Delivering of Music (WEDELMUSIC), Florence (2001)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. In: Proceedings of the Annual Meeting of the American Society for Information Science (ASIS), Pittsburgh, pp. 161–172 (1998)
Pohle, T., Knees, P., Schedl, M., Pampalk, E., Widmer, G.: “Reinventing the wheel”: a novel approach to music player interfaces. IEEE Trans. Multimed. 9, 567–575 (2007)
Robertson, S., Walker, S., Hancock-Beaulieu, M.: Large test collection experiments on an operational, interactive system: okapi at TREC. Inf. Process. Manag. 31, 345 (1995)
Robertson, S., Walker, S., Beaulieu, M.: Okapi at TREC-7: automatic ad hoc, filtering, VLC and interactive track. In: Proceedings of the 7th Text REtrieval Conference (TREC-7), Gaithersburg, pp. 253–264 (1999)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)
Schedl, M.: Automatically extracting, analyzing, and visualizing information on music artists from the world wide web. Ph.D. thesis, Johannes Kepler University Linz, Linz (2008)
Schedl, M.: On the use of microblogging posts for similarity estimation and artist labeling. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), Utrecht (2010)
Schedl, M.: #nowplaying madonna: a large-scale evaluation on estimating similarities between music artists and between movies from microblogs. Inf. Retr. 15, 183–217 (2012)
Schedl, M., Knees, P.: Context-based music similarity estimation. In: Proceedings of the 3rd International Workshop on Learning the Semantics of Audio Signals (LSAS), Graz (2009)
Schedl, M., Knees, P.: Personalization in multimodal music retrieval. In: Proceedings of the 9th Workshop on Adaptive Multimedia Retrieval (AMR), Barcelona (2011)
Schedl, M., Pohle, T.: Enlightening the sun: a user interface to explore music artists via multimedia content. Multimed. Tools Appl. Spec. Issue Semant. Digit. Media Technol. 49(1), 101–118 (2010)
Schedl, M., Knees, P., Widmer, G.: A web-based approach to assessing artist similarity using co-occurrences. In: Proceedings of the 4th International Workshop on Content-Based Multimedia Indexing (CBMI), Riga (2005)
Schedl, M., Pohle, T., Koenigstein, N., Knees, P.: What’s hot? Estimating country-specific artist popularity. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), Utrecht (2010)
Schedl, M., Knees, P., Böck, S.: Investigating the similarity space of music artists on the micro-blogosphere. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami (2011)
Schedl, M., Hauger, D., Schnitzer, D.: A model for serendipitous music retrieval. In: Proceedings of the 16th International Conference on Intelligent User Interfaces (IUI 2012): 2nd International Workshop on Context-Awareness in Retrieval and Recommendation (CaRR 2012), Lisbon (2012)
Seyerlehner, K., Schedl, M., Knees, P., Sonnleitner, R.: A refined block-level feature set for classification, similarity and tag prediction. In: Extended Abstract to the Music Information Retrieval Evaluation eXchange (MIREX 2011)/12th International Society for Music Information Retrieval Conference (ISMIR 2011), Miami (2009)
Seyerlehner, K., Widmer, G., Pohle, T.: Fusing block-level features for music similarity estimation. In: Proceedings of the 13th International Conference on Digital Audio Effects (DAFx-10), Graz (2010)
Shavitt, Y., Weinsberg, U.: Songs clustering using peer-to-peer co-occurrences. In: Proceedings of the IEEE International Symposium on Multimedia (ISM): International Workshop on Advances in Music Information Research (AdMIRe), San Diego (2009)
Smolensky, P.: Information Processing in Dynamical Systems: Foundations of Harmony Theory, pp. 194–281. MIT, Cambridge (1986)
Sordo, M.: Semantic annotation of music collections: a computational approach. Ph.D. thesis, Universitat Pompeu Fabra, Barcelona (2012)
Sordo, M., Gouyon, F., Sarmento, L.: A method for obtaining semantic facets of music tags. In: Proceedings of the Workshop on Music Recommendation and Discovery (WOMRAD), Barcelona (2010)
Stober, S.: Adaptive methods for user-centered organization of music collections. Ph.D. thesis, Otto-von-Guericke-University, Magdeburg (2011)
Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Towards musical query-by-semantic-description using the CAL500 data set. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Amsterdam (2007)
Turnbull, D., Liu, R., Barrington, L., Lanckriet, G.: A game-based approach for collecting semantic annotations of music. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)
Vasconcelos, N.: Image indexing with mixture hierarchies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Kauai (2001)
Whitman, B., Lawrence, S.: Inferring descriptions and similarity for music from community metadata. In: Proceedings of the 2002 International Computer Music Conference (ICMC), Göteborg, pp. 591–598 (2002)
Wolff, D., Weyde, T.: Adapting metrics for music similarity using comparative ratings. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this chapter
Cite this chapter
Schedl, M. (2013). Exploiting Social Media for Music Information Retrieval. In: Ramzan, N., van Zwol, R., Lee, JS., Clüver, K., Hua, XS. (eds) Social Media Retrieval. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-4555-4_20
Download citation
DOI: https://doi.org/10.1007/978-1-4471-4555-4_20
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-4554-7
Online ISBN: 978-1-4471-4555-4
eBook Packages: Computer ScienceComputer Science (R0)