Abstract
Manually annotating large scale content such as Internet videos is an expensive and consuming process. Furthermore, community-provided tags lack consistency and present numerous irregularities. This chapter aims to provide a forum for the state-of-the-art research in this emerging field, with particular focus on mechanisms capable of exploiting the full range of information available online to predict user tags automatically. The exploited information covers both semantic metadata including complementary information in external resources and embedded low-level features within the multimedia content. Furthermore, this chapter presents a framework for predicting general tags from the associated textual metadata and visual features. The goal of this framework is to simplify and improve the process of tagging online videos, which are unbounded to any particular domain. In this framework, the first step is to extract named entities exploiting complementary textual resources such as Wikipedia and WordNet. To facilitate the extraction of semantically meaningful tags from a largely unstructured textual corpus, this framework employs GATE natural language processing tools. Extending the functionalities of the built-in GATE named entities, the framework also integrates a bag-of-articles algorithm for effectively extracting relevant articles from the Wikipedia articles. Experiments were conducted for validation of the framework against MediaEval 2010 Wild Wild Web dataset for the tagging task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
secondlife.com/
- 6.
twitter.com/
- 7.
- 8.
- 9.
The first paragraph of a Wikipedia article contains usually the definition of the article subject, it can be therefore expected to contain more relevant words than the rest of the text.
- 10.
- 11.
- 12.
A is said to be related to B, if A links to B, and there is some C that links to both A and B (source: Lucene-Search Extension documentation).
- 13.
References
Akbas, E., Yarman Vural, F.T.: Automatic image annotation by ensemble of visual descriptors. In: CVPR, Minneapolis, pp. 1–8 (2007)
Al-Khalifa, H.S., Davis, H.C.: Exploring the value of folksonomies for creating semantic metadata. IJSWIS 3(1), 13–39 (2007)
Atomiq, G.S.: Folksonomy: social classification. http://atomiq.org/archives/2004/08/folksonomysocialclassification.html. Accessed August 2004
Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social annotations. In: Proceedings of WWW2007, pp. 501–510. ACM, New York (2007)
Barnard, K., Duygulu, P., Forsyth, D., De Freitas, N., Blei, D.M., Jordan, M.I.: Matching words and pictures. J. Mach. Learn. Res. 3, 1107–1135 (2003)
Bast, H., Dupret, G., Majumdar, D., Piwowarski, B.: Discovering a term taxonomy from term similarities using principal component analysis. In: Semantic Web Mining. Springer, Berlin/New York (2006)
Blohm, S., Cimiano, P.: Using the web to reduce data sparseness in pattern-based information extraction. In: PKDD. Lecture Notes in Computer Science, vol. 4702, pp. 18–29. Springer, Berlin/New York (2007)
Brezeale, D., Cook, D.J.: Automatic video classification: a survey of the literature. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(3), 416–430 (2008)
Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic relatedness. Comput. Linguist. 32(1), 13–47 (2006)
Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 394–410 (2007)
Chandramouli, K., Kliegr, T., Svatek, V., Izquierdo, E.: Towards semantic tagging in collaborative environments. In: 16th International Conference on Digital Signal Processing 2009, pp. 1–6. IEEE, Piscataway (2009)
Chang, E., Goh, K., Sychay, G., Wu, G.: Cbsa: content-based soft annotation for multimodal image retrieval using bayes point machines. IEEE Trans. Circuits Syst. Video Technol. 13(1), 26–38 (2003)
Cimiano, P., Voelker, J.: Text2onto – a framework for ontology learning and data-driven change discovery. In: NLDB 2005, Alicante (2005)
Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data. In: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, pp. 708–716 (2007)
Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)
Deerwester, D.S., Fumas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. ACM Trans. Inf. Syst. (2000)
Ding, G., Bai, S., Wang, B.: Local co-occurrence based query expansion for information retrieval. J. Chin. Inf. Process. 20, 84–91 (2006)
Duygulu, P., Barnard, K., de Freitas, J., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: ECCV 2002, Copenhagen, pp. 349–354 (2002)
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT, Cambridge/London/England (1998)
Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific keyphrase extraction. In: Proceeding of 16th International Joint Conference on Artificial Intelligence, Stockholm, pp. 668–673 (1999)
Gabrilovich, E., Markovich, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 07), Hyderabad (2007)
Gao, Y., Fan, J., Xue, X., Jain, R.: Automatic image annotation by incorporating feature hierarchy and boosting to scale up svm classifiers. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, pp. 901–910. ACM, New York (2006)
Gong, Z., Cheang, C.W., Hou, U.L.: Web query expansion by wordnet. In: DEXA 2005, Copenhagen. LNCS, vol. 3588, pp. 166–175 (2002)
Grootjen, T.P.: Conceptual query expansion. Data Knowl. Eng. 56, 174–193 (2005)
Guillaumin, M., Mensink, T., Verbeek, J.: TagProp: discriminative metric learning in nearest neighbor models for image auto-annotation. In: ICCV, Kyoto, pp. 309–316 (2009)
Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Fourteenth International Conference on Computational Linguistics, Nantes, pp. 539–545 (1992)
Hernández-Aranda, D., Granados, R., Cigarran, J., Rodrigo, A., Fresno, V., Garcıa-Serrano, A.: UNED at mediaeval 2010: exploiting text metadata for automatic video tagging. In: MediaEval 2010 Workshop, Pisa (2010)
Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 531–538. ACM, New York (2008)
Hoeber, O., Yang, X.-D., Yao, Y.: Conceptual query expansion. In: Proceedings of the Atlantic Web Intelligence Conference, Lodz (2005)
Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Proceedings of ESWC 2006, Budva, pp. 411–426 (2006)
Kliegr, T.: Entity classification by bag of wikipedia articles. In: Proceedings of the 3rd Workshop on Ph.D. Students in Information and Knowledge Management, pp. 67–74. ACM, New York (2010)
Kliegr, T., Chandramouli, K., Nemrava, J., Svátek, V., Izquierdo, E.: Combining captions and visual analysis for image concept classification. In: MDM/KDD’08: Proceedings of the 9th International Workshop on Multimedia Data Mining. ACM, New York (2008)
Larson, M., Soleymani, M., Serdyukov, P., Murdock, V., Jones, G. (eds.): In: Working Notes Proceedings of the MediaEval 2010 Workshop, Pisa (2010)
Li, D., Cai, D.: A study of query extension based on query log analysis. In: Proceedings of the Fourth National Student Conference on Computational Linguistics (SWCL-2008) (2008)
Li, Q., Lu, S.C.Y.: Collaborative tagging applications and approaches. IEEE Multimed. 15(3), pp. 14–21 (2008)
Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. In: MM, Santa Barbara, pp. 911–920 (2006)
Li, X., Snoek, C.G.M., Worring, M.: Learning tag relevance by neighbor voting for social image retrieval. In: MIR, Vancouver, pp. 180–187 (2008)
Li, X., Snoek, C.G.M., Worring, M.: Annotating images by harnessing worldwide user-tagged photos. In: ICASSP, Taipei, pp. 3717–3720 (2009)
Lindstaedt, S., Mörzinger, R., Sorschag, R., Pammer, V., Thallinger, G.: Automatic image annotation using visual content and folksonomies. Multimed. Tools Appl. 42(1), 97–113 (2009)
Liu, X., Bruce Croft, W.: Cluster-based retrieval using language models. In: The 2004 ACM 1-58113-881-4/04/0007, 25–29 July 2004
Liu, S., Liu, F., Yu, C., Meng, W.: An effective approach to document retrieval via utilizing wordNet and recognizing phrases. In: Proceedings of the 27th Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, Sheffield (2004)
Liu, J., Wang, B., Li, M., Li, Z., Ma, W.Y., Lu, H., Ma, S.: Dual cross-media relevance model for image annotation. In: MM, Augsburg, pp. 605–614 (2007)
Mandel, M., Ellis, D.: A web-based game for collecting music metadata. In: ISMIR, Vienna (2007)
Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT, Cambridge (1999)
Marlow, C., Naaman, M., Boyd, D., Davis, M.: Position paper, tagging, taxonomy, flickr, article, toRead. In: Proceedings of the 17th Conference on Hypertext and Hypermedia, Odense, pp. 31–40. ACM, New York (2006)
Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: Advancement of Artificial Intelligence (2008)
Mittal, N., Nayak, R., Govil, M.C., Jain, K.C.: Dynamic query expansion for efficient information retrieval. In: The Proceedings of International Conference on Web Information Systems and Mining, Sanya (2010)
Moehrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Improving the usability of hierarchical representations for interactively labeling large image data sets. In: Jacko, J. (ed.) Human-Computer Interaction, Design and Development Approaches. Lecture Notes in Computer Science, vol. 6761, pp. 618–627. Springer, Berlin/New York (2011)
Monay, F., Gatica-Perez, D.: On image auto-annotation with latent space models. In: MM, Berkeley, pp. 275–278 (2003)
Nemeth, Y., Shapira, B., Taeib-Maimon, M.: Evaluation of the real and perceived value of automatic and interactive query expansion. In: SIGIR ’04, Sheffield, pp. 526–527 (2006)
Nemrava, J.: Refining search queries using wordnet glosses. In: EKAW 2006, Podebrady, pp. 2–6 (2006)
Paltoglou, G.: A study of information retrieval weighting schemes for sentiment analysis. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, vol. 11–16, pp. 1386–1395 (2010)
Qiu, Y., Frei, H.-P.: Concept based query expansion. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 160–169. ACM, Pittsburgh (1993)
Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90. ACM, New York (2010)
Richardson, R., Smeaton, A.F.: Using wordNet in a knowledge-based approach to information retrieval. In: Proceedings of the BCS-IRSG Colloquium, Crewe (1995)
San Pedro, J., Siersdorfer, S., Sanderson, M.: Content redundancy in YouTube and its application to video Tagging. ACM Trans. Inf. Syst. 29(3), 13:1–13:31 (2011)
Seneviratne, L., Izquierdo, E.: An interactive framework for image annotation through gaming. In: MIR, Philadelphia, pp. 517–526 (2010)
Shapira, B., Taieb-Maimon, M., Nemeth, Y.: Subjective and objective evaluation of interactive and automatic query expansion. In: Online Information Review, pp. 374–390. Emerald, Bradford (2005)
Siersdorfer, S., San Pedro, J., Sanderson, M.: Automatic video tagging using content redundancy. In: SIGIR 2009, Boston, pp. 395–402 (2009)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Snoek, C.G.M., Worring, M.: Concept-based video retrieval. Found. Trends Inf. Retr. 2(4), 215–322 (2008)
Snow, R., Jurafsky, D., Ng, A.: Learning syntactic patterns for automatic hypernym discovery. In: NIPS. Morgan Kaufmann, San Mateo (2005)
Strube, M., Ponzetto, S.P.: WikiRelate! computing semantic relatedness using wikipedia. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), Boston, pp. 1419–1424 (2006)
Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW 2007: 16th International World Wide Web Conference. ACM, New York (2007)
Sun, A., Bhowmick, S.S.: Image tag clarity: in search of visual-representative tags for social images. In: WSM, Beijing, pp. 19–26 (2009)
Tingle, D., Kim, Y.E., Turnbull, D.: Exploring automatic music annotation with acoustically-objective tags. In: MIR, Philadelphia, pp. 55–62 (2010)
Turnbull, D., Liu, R., Barrington, L., Lanckriet, G.: A game-based approach for collecting semantic annotations of music. In: ISMIR, Vienna (2007)
Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 2(16), 467–476 (2008)
Ulges, A., Schulze, C., Koch, M., Breuel, T.M.: Learning automatic concept detectors from online video. Comput. Vis. Image Underst. 114(4), 429–438 (2010)
Ulges, A., Worring, M., Breuel, T.: Learning visual contexts for image annotation from flickr groups. IEEE Trans. Multimed. 13(2), 330–341 (2011)
Varelas, G., Voutsakis, E., Raftopoulou, P.: Semantic similarity methods in wordNet and their application to information retrieval on the web. In: 7th ACM International Workshop on Web Information and Data Management, Bremen (2005)
von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: CHI, Vienna, pp. 319–326 (2004)
Wang, M., Yang, K., Hua, X.S., Zhang, H.J.: Visual tag dictionary: interpreting tags with visual words. In: WSCM, pp. 1–8 (2009)
Wang, Z., Li, X., Xu, R.: Multi-keywords query expansion with OLCA based concept tree pruning. Comput. Sci. 37(4), 132 (2010)
Wartena, C.: Using a divergence model for mediaeval tagging task. In: MediaEval 2010 Workshop, Pisa (2010)
Wen, N.J., Zhang, H.J.: Clustering user queries of a search engine. In: Proceedings of the 10th International World Wide Web Conference (WWW10), Hong Kong (2001)
Wen, J., Cui, H., Li, M.: A statistical query expansion model based on query logs. J. Softw. (2003)
Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proceedings of WWW06, Edinburgh, pp. 417–426 (2006)
Wu, L., Yang, L., Hua, X.S., Yu, N.: Learning to tag. In: WWW, Madrid, pp. 361–370 (2009)
Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: Proceedings of ACM SIGIR, Singapore, pp. 155–162 (2008)
Yan, X., Huang, M., Zhang, S.: Query expansion of pseudo relevance feedback based on matrix-weighted association rules mining. Inst. Softw. Chin. Acad. Sci. 20, 1854–1865 (2009)
Zhang, J., Deng, B., Li, X.: Concept based query expansion using wordNet. In: AST ’09 Proceedings of the 2009 International e-Conference on Advanced Science and Technology, Daejeon, pp 52–55 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this chapter
Cite this chapter
Piatrik, T., Zhang, Q., Sevillano, X., Izquierdo, E. (2013). Predicting User Tags in Social Media Repositories Using Semantic Expansion and Visual Analysis. In: Ramzan, N., van Zwol, R., Lee, JS., Clüver, K., Hua, XS. (eds) Social Media Retrieval. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-4555-4_7
Download citation
DOI: https://doi.org/10.1007/978-1-4471-4555-4_7
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-4554-7
Online ISBN: 978-1-4471-4555-4
eBook Packages: Computer ScienceComputer Science (R0)