Skip to main content

A Model of Boot-up Storm Dynamics

  • Conference paper
  • First Online:
Computer and Information Sciences III

Abstract

The simultaneous boot of multiple virtual machines or networking devices imposes heavy load on the networking infrastructure. In large network of many virtual machines the coordination of the reboots and device registration is required. In the paper we present a simple analytical model computing the distribution of boot-up time, which is verified by comparison to a simulation model and provide analysis of the influence of several parameters on the overall boot-up time during a boot storm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, J., Valko, P.P.: Multi-precision Laplace transform inversion. Int. J. Numer. Meth. Eng. 60, 979–993 (2004)

    Article  MATH  Google Scholar 

  2. Abbondanzio, A., et al.: System and method for prevention of boot storms in a computer network. US Patent 7,415,519, 2008

    Google Scholar 

  3. Bierman, A., Enns, R., Bjorklund, M., Schoenwaelder, J.: Network configuration protocol (NETCONF). http://tools.ietf.org/html/rfc6241

  4. Cox, R.P., Miller, H.D.: The Theory of Stochastic Processes. Chapman and Hall, London (1965)

    MATH  Google Scholar 

  5. CPE WAN Management Protocol. TR-069 Amendment 4. Broadband Forum. July 2011. Retrieved February 16, 2012

    Google Scholar 

  6. Gelenbe, E.: On approximate computer systems models. J. ACM 22(2), 261–263 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gelenbe, E.: A diffusion model for packet travel time in a random multi-Hop medium. ACM Trans. Sens. Netw. 3(2), 1–19 (2007)

    Article  Google Scholar 

  8. Gelenbe, E.: Search in unknown random environments. Phys. Rev. E 82, 061112 (2010)

    Article  Google Scholar 

  9. Gelenbe, E., Pujolle, G.: The behaviour of a single queue in a general queueing network. Acta Informatica 7(2), 123–136 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen J.G., Jul, E.: Lithium: virtual machine storage for the Cloud. ACM SoCC 2010 in Indianapolis, Indiana

    Google Scholar 

  11. Kleinrock, L.: Queueing Systems, vol. II. Wiley, New York (1976)

    MATH  Google Scholar 

  12. McCloghrie, K., Schoenwaelder, J., Perkins, D.: Structure of management information version 2 (SMIv2). http://tools.ietf.org/html/rfc2578

  13. Newell, G.F.: Applications of Queueing Theory. Chapman and Hall, London (1971)

    MATH  Google Scholar 

  14. OMNET ++ site. http://www.omnetpp.org

  15. Stehfest, H.: Algorithm 368: numeric inversion of Laplace transform. Commun. ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

  16. Stewart, W.J.: An Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    Google Scholar 

  17. Soundararajan, V., Anderson, J.M.: The impact of management operations on the virtualized datacenter. In: Proceedings of the 37th Annual International Symposium on Computer Architecture, pp. 326–337, New York (2010)

    Google Scholar 

  18. Stanley, D., Montemurro, M.P., Calhoun, P.R.: Control and provisioning of wireless access points (CAPWAP) protocol binding for IEEE 802.11. http://tools.ietf.org/html/rfc5416

  19. Talbot, A.: The accurate numerical inversion of Laplace transforms. J. Inst. Math. Its Appl. 23, 97–120 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Varga A.: The OMNeT++ discrete event simulation system. In: Proceedings of the European Simulation Multiconference (ESM’2001), Praga (2001)

    Google Scholar 

  21. Virt tools. http://virt-tools.org/

  22. VMware vCenter. http://www.vmware.com/pl/products/datacenter-virtualization/vcenter-operations-management/overview.html

Download references

Acknowledgments

This research was partially financed by a grant no. 4796/B/ T02/ 2011/40 of Polish National Council of Science (NCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Grochla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

Atmaca, T., Czachórski, T., Grochla, K., Nycz, T., Pekergin, F. (2013). A Model of Boot-up Storm Dynamics. In: Gelenbe, E., Lent, R. (eds) Computer and Information Sciences III. Springer, London. https://doi.org/10.1007/978-1-4471-4594-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4594-3_38

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4593-6

  • Online ISBN: 978-1-4471-4594-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics